Keywords: $\rm (L)$ set; order $\rm (L)$-Dunford-Pettis operator; weakly sequentially continuous lattice operations; Banach lattice
@article{10_21136_MB_2016_0076_14,
author = {El Fahri, Kamal and Machrafi, Nabil and H'michane, Jawad and Elbour, Aziz},
title = {Application of $\rm (L)$ sets to some classes of operators},
journal = {Mathematica Bohemica},
pages = {327--338},
year = {2016},
volume = {141},
number = {3},
doi = {10.21136/MB.2016.0076-14},
mrnumber = {3557583},
zbl = {06644017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0076-14/}
}
TY - JOUR AU - El Fahri, Kamal AU - Machrafi, Nabil AU - H'michane, Jawad AU - Elbour, Aziz TI - Application of $\rm (L)$ sets to some classes of operators JO - Mathematica Bohemica PY - 2016 SP - 327 EP - 338 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0076-14/ DO - 10.21136/MB.2016.0076-14 LA - en ID - 10_21136_MB_2016_0076_14 ER -
%0 Journal Article %A El Fahri, Kamal %A Machrafi, Nabil %A H'michane, Jawad %A Elbour, Aziz %T Application of $\rm (L)$ sets to some classes of operators %J Mathematica Bohemica %D 2016 %P 327-338 %V 141 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0076-14/ %R 10.21136/MB.2016.0076-14 %G en %F 10_21136_MB_2016_0076_14
El Fahri, Kamal; Machrafi, Nabil; H'michane, Jawad; Elbour, Aziz. Application of $\rm (L)$ sets to some classes of operators. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 327-338. doi: 10.21136/MB.2016.0076-14
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006). | MR | Zbl
[2] Aqzzouz, B., Bouras, K.: Weak and almost Dunford-Pettis operators on Banach lattices. Demonstr. Math. 46 (2013), 165-179. | MR | Zbl
[3] Aqzzouz, B., Bouras, K.: Dunford-Pettis sets in Banach lattices. Acta Math. Univ. Comen., New Ser. 81 (2012), 185-196. | MR | Zbl
[4] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices. Isr. J. Math. 34 (1979), 287-320. | DOI | MR | Zbl
[5] Kaddouri, A. El, Moussa, M.: About the class of ordered limited operators. Acta Univ. Carol. Math. Phys. 54 (2013), 37-43. | MR | Zbl
[6] Emmanuele, G.: A dual characterization of Banach spaces not containing $\ell ^{1}$. Bull. Pol. Acad. Sci. Math. 34 (1986), 155-160. | MR
[7] Ghenciu, I., Lewis, P.: The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets. Colloq. Math. 106 (2006), 311-324. | DOI | MR | Zbl
[8] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). | MR | Zbl
Cité par Sources :