Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 315-325.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
DOI : 10.21136/MB.2016.0072-14
Classification : 53C15, 53C20, 53C25
Keywords: Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
@article{10_21136_MB_2016_0072_14,
     author = {Ghosh, Amalendu},
     title = {Complete {Riemannian} manifolds admitting a pair of {Einstein-Weyl} structures},
     journal = {Mathematica Bohemica},
     pages = {315--325},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2016},
     doi = {10.21136/MB.2016.0072-14},
     mrnumber = {3557582},
     zbl = {06644016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/}
}
TY  - JOUR
AU  - Ghosh, Amalendu
TI  - Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
JO  - Mathematica Bohemica
PY  - 2016
SP  - 315
EP  - 325
VL  - 141
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/
DO  - 10.21136/MB.2016.0072-14
LA  - en
ID  - 10_21136_MB_2016_0072_14
ER  - 
%0 Journal Article
%A Ghosh, Amalendu
%T Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
%J Mathematica Bohemica
%D 2016
%P 315-325
%V 141
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/
%R 10.21136/MB.2016.0072-14
%G en
%F 10_21136_MB_2016_0072_14
Ghosh, Amalendu. Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 315-325. doi : 10.21136/MB.2016.0072-14. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/

Cité par Sources :