Keywords: Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
@article{10_21136_MB_2016_0072_14,
author = {Ghosh, Amalendu},
title = {Complete {Riemannian} manifolds admitting a pair of {Einstein-Weyl} structures},
journal = {Mathematica Bohemica},
pages = {315--325},
year = {2016},
volume = {141},
number = {3},
doi = {10.21136/MB.2016.0072-14},
mrnumber = {3557582},
zbl = {06644016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/}
}
TY - JOUR AU - Ghosh, Amalendu TI - Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures JO - Mathematica Bohemica PY - 2016 SP - 315 EP - 325 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/ DO - 10.21136/MB.2016.0072-14 LA - en ID - 10_21136_MB_2016_0072_14 ER -
Ghosh, Amalendu. Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 315-325. doi: 10.21136/MB.2016.0072-14
[1] Besse, A. L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10 Springer, Berlin (1987), German. | MR | Zbl
[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203 Birkhäuser, Boston (2010). | MR | Zbl
[3] Boyer, C. P., Galicki, K.: Sasakian Geometry. Oxford Mathematical Monographs Oxford University Press, Oxford (2008). | MR | Zbl
[4] Boyer, C. P., Galicki, K., Matzeu, P.: On $\eta$-Einstein Sasakian geometry. Comm. Math. Phys. 262 (2006), 177-208. | DOI | MR | Zbl
[5] Gauduchon, P.: Weil-Einstein structures, twistor spaces and manifolds of type {$S^1\times S^3$}. J. Reine Angew. Math. 469 (1995), 1-50 French. | MR
[6] Gauduchon, P.: La 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267 (1984), 495-518 French. | DOI | MR | Zbl
[7] Ghosh, A.: Certain infinitesimal transformations on contact metric manifolds. J. Geom. 106 (2015), 137-152. | DOI | MR | Zbl
[8] Ghosh, A.: Einstein-Weyl structures on contact metric manifolds. Ann. Global Anal. Geom. 35 (2009), 431-441. | DOI | MR | Zbl
[9] Higa, T.: Weyl manifolds and Einstein-Weyl manifolds. Comment. Math. Univ. St. Pauli 42 (1993), 143-160. | MR | Zbl
[10] Ishihara, S.: On infinitesimal concircular transformations. Kōdai Math. Semin. Rep. 12 (1960), 45-56. | DOI | MR | Zbl
[11] Narita, F.: Einstein-Weyl structures on almost contact metric manifolds. Tsukuba J. Math. 22 (1998), 87-98. | DOI | MR | Zbl
[12] Nouhaud, O.: Déformations infinitésimales harmoniques remarquables. C. R. Acad. Sci. Paris Sér. A 275 (1972), 1103-1105 French. | MR | Zbl
[13] Okumura, M.: Some remarks on space with a certain contact structure. Tohoku Math. J. (2) 14 (1962), 135-145. | DOI | MR | Zbl
[14] Pedersen, H., Swann, A.: Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. J. Reine Angew. Math. 441 (1993), 99-113. | MR | Zbl
[15] Pedersen, H., Swann, A.: Riemannian submersions, four-manifolds and Einstein-Weyl geometry. Proc. Lond. Math. Soc. (3) 66 (1993), 381-399. | DOI | MR | Zbl
[16] Perrone, D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20 (2004), 367-378. | DOI | MR | Zbl
[17] Stepanov, S. E., Shandra, I. G.: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24 (2003), 291-299. | DOI | MR | Zbl
[18] Stepanov, S. E., Tsyganok, I. I., Mikeš, J.: From infinitesimal harmonic transformations to Ricci solitons. Math. Bohem. 138 (2013), 25-36. | MR | Zbl
[19] Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12 (1968), 700-717. | DOI | MR | Zbl
[20] Tod, K. P.: Compact 3-dimensional Einstein-Weyl structures. J. Lond. Math. Soc. (2) 45 (1992), 341-351. | DOI | MR | Zbl
[21] Yano, K.: Integral Formulas in Riemannian Geometry. Pure and Applied Mathematics, No. 1 Marcel Dekker, New York (1970). | MR | Zbl
Cité par Sources :