Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 315-325
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm \omega )$ with constant scalar curvature is either Einstein, or the dual field of $\omega $ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm \omega )$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega $) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.
DOI :
10.21136/MB.2016.0072-14
Classification :
53C15, 53C20, 53C25
Keywords: Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
Keywords: Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation
@article{10_21136_MB_2016_0072_14,
author = {Ghosh, Amalendu},
title = {Complete {Riemannian} manifolds admitting a pair of {Einstein-Weyl} structures},
journal = {Mathematica Bohemica},
pages = {315--325},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2016},
doi = {10.21136/MB.2016.0072-14},
mrnumber = {3557582},
zbl = {06644016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/}
}
TY - JOUR AU - Ghosh, Amalendu TI - Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures JO - Mathematica Bohemica PY - 2016 SP - 315 EP - 325 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/ DO - 10.21136/MB.2016.0072-14 LA - en ID - 10_21136_MB_2016_0072_14 ER -
%0 Journal Article %A Ghosh, Amalendu %T Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures %J Mathematica Bohemica %D 2016 %P 315-325 %V 141 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0072-14/ %R 10.21136/MB.2016.0072-14 %G en %F 10_21136_MB_2016_0072_14
Ghosh, Amalendu. Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 315-325. doi: 10.21136/MB.2016.0072-14
Cité par Sources :