Some generalizations of Olivier's theorem
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 483-494
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\sum \limits _{n=1}^\infty a_n$ be a convergent series of positive real numbers. L. Olivier proved that if the sequence $(a_n)$ is non-increasing, then $\lim \limits _{n \to \infty } n a_n = 0$. In the present paper: \endgraf (a) We formulate and prove a necessary and sufficient condition for having $\lim \limits _{n \to \infty } n a_n = 0$; Olivier's theorem is a consequence of our Theorem \ref {import}. \endgraf (b) We prove properties analogous to Olivier's property when the usual convergence is replaced by the $\mathcal I$-convergence, that is a convergence according to an ideal $\mathcal I$ of subsets of $\mathbb N$. Again, Olivier's theorem is a consequence of our Theorem \ref {Iol}, when one takes as $\mathcal I$ the ideal of all finite subsets of $\mathbb N$.
Let $\sum \limits _{n=1}^\infty a_n$ be a convergent series of positive real numbers. L. Olivier proved that if the sequence $(a_n)$ is non-increasing, then $\lim \limits _{n \to \infty } n a_n = 0$. In the present paper: \endgraf (a) We formulate and prove a necessary and sufficient condition for having $\lim \limits _{n \to \infty } n a_n = 0$; Olivier's theorem is a consequence of our Theorem \ref {import}. \endgraf (b) We prove properties analogous to Olivier's property when the usual convergence is replaced by the $\mathcal I$-convergence, that is a convergence according to an ideal $\mathcal I$ of subsets of $\mathbb N$. Again, Olivier's theorem is a consequence of our Theorem \ref {Iol}, when one takes as $\mathcal I$ the ideal of all finite subsets of $\mathbb N$.
DOI : 10.21136/MB.2016.0057-15
Classification : 11B05, 40A05, 40A35
Keywords: convergent series; Olivier's theorem; ideal; $\mathcal {I}$-convergence; $\mathcal {I}$-monotonicity
@article{10_21136_MB_2016_0057_15,
     author = {Faisant, Alain and Grekos, Georges and Mi\v{s}{\'\i}k, Ladislav},
     title = {Some generalizations of {Olivier's} theorem},
     journal = {Mathematica Bohemica},
     pages = {483--494},
     year = {2016},
     volume = {141},
     number = {4},
     doi = {10.21136/MB.2016.0057-15},
     mrnumber = {3576795},
     zbl = {06674858},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/}
}
TY  - JOUR
AU  - Faisant, Alain
AU  - Grekos, Georges
AU  - Mišík, Ladislav
TI  - Some generalizations of Olivier's theorem
JO  - Mathematica Bohemica
PY  - 2016
SP  - 483
EP  - 494
VL  - 141
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/
DO  - 10.21136/MB.2016.0057-15
LA  - en
ID  - 10_21136_MB_2016_0057_15
ER  - 
%0 Journal Article
%A Faisant, Alain
%A Grekos, Georges
%A Mišík, Ladislav
%T Some generalizations of Olivier's theorem
%J Mathematica Bohemica
%D 2016
%P 483-494
%V 141
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/
%R 10.21136/MB.2016.0057-15
%G en
%F 10_21136_MB_2016_0057_15
Faisant, Alain; Grekos, Georges; Mišík, Ladislav. Some generalizations of Olivier's theorem. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 483-494. doi: 10.21136/MB.2016.0057-15

[1] Bandyopadhyay, S.: Mathematical Analysis: Problems and Solutions. Academic Publishers, Kolkata (2006).

[2] Knopp, K.: Theory and Applications of Infinite Series. Springer, Berlin (1996), German. | Zbl

[3] Kostyrko, P., Šalát, T., Wilczyński, W.: $\scr I$-convergence. Real Anal. Exch. 26 (2001), 669-685. | MR

[4] Krzyž, J.: Olivier's theorem and its generalizations. Pr. Mat. 2 (1956), Polish, Russian 159-164. | MR | Zbl

[5] Olivier, L.: Remarks on infinite series and their convergence. J. Reine Angew. Math. 2 (1827), French 31-44. | MR

[6] Šalát, T., Toma, V.: A classical Olivier's theorem and statistical convergence. Ann. Math. Blaise Pascal 10 (2003), 305-313. | DOI | MR | Zbl

Cité par Sources :