Some generalizations of Olivier's theorem
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 483-494
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\sum \limits _{n=1}^\infty a_n$ be a convergent series of positive real numbers. L. Olivier proved that if the sequence $(a_n)$ is non-increasing, then $\lim \limits _{n \to \infty } n a_n = 0$. In the present paper: \endgraf (a) We formulate and prove a necessary and sufficient condition for having $\lim \limits _{n \to \infty } n a_n = 0$; Olivier's theorem is a consequence of our Theorem \ref {import}. \endgraf (b) We prove properties analogous to Olivier's property when the usual convergence is replaced by the $\mathcal I$-convergence, that is a convergence according to an ideal $\mathcal I$ of subsets of $\mathbb N$. Again, Olivier's theorem is a consequence of our Theorem \ref {Iol}, when one takes as $\mathcal I$ the ideal of all finite subsets of $\mathbb N$.
DOI :
10.21136/MB.2016.0057-15
Classification :
11B05, 40A05, 40A35
Keywords: convergent series; Olivier's theorem; ideal; $\mathcal {I}$-convergence; $\mathcal {I}$-monotonicity
Keywords: convergent series; Olivier's theorem; ideal; $\mathcal {I}$-convergence; $\mathcal {I}$-monotonicity
@article{10_21136_MB_2016_0057_15,
author = {Faisant, Alain and Grekos, Georges and Mi\v{s}{\'\i}k, Ladislav},
title = {Some generalizations of {Olivier's} theorem},
journal = {Mathematica Bohemica},
pages = {483--494},
publisher = {mathdoc},
volume = {141},
number = {4},
year = {2016},
doi = {10.21136/MB.2016.0057-15},
mrnumber = {3576795},
zbl = {06674858},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/}
}
TY - JOUR AU - Faisant, Alain AU - Grekos, Georges AU - Mišík, Ladislav TI - Some generalizations of Olivier's theorem JO - Mathematica Bohemica PY - 2016 SP - 483 EP - 494 VL - 141 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/ DO - 10.21136/MB.2016.0057-15 LA - en ID - 10_21136_MB_2016_0057_15 ER -
%0 Journal Article %A Faisant, Alain %A Grekos, Georges %A Mišík, Ladislav %T Some generalizations of Olivier's theorem %J Mathematica Bohemica %D 2016 %P 483-494 %V 141 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/ %R 10.21136/MB.2016.0057-15 %G en %F 10_21136_MB_2016_0057_15
Faisant, Alain; Grekos, Georges; Mišík, Ladislav. Some generalizations of Olivier's theorem. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 483-494. doi: 10.21136/MB.2016.0057-15
Cité par Sources :