Keywords: convergent series; Olivier's theorem; ideal; $\mathcal {I}$-convergence; $\mathcal {I}$-monotonicity
@article{10_21136_MB_2016_0057_15,
author = {Faisant, Alain and Grekos, Georges and Mi\v{s}{\'\i}k, Ladislav},
title = {Some generalizations of {Olivier's} theorem},
journal = {Mathematica Bohemica},
pages = {483--494},
year = {2016},
volume = {141},
number = {4},
doi = {10.21136/MB.2016.0057-15},
mrnumber = {3576795},
zbl = {06674858},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/}
}
TY - JOUR AU - Faisant, Alain AU - Grekos, Georges AU - Mišík, Ladislav TI - Some generalizations of Olivier's theorem JO - Mathematica Bohemica PY - 2016 SP - 483 EP - 494 VL - 141 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/ DO - 10.21136/MB.2016.0057-15 LA - en ID - 10_21136_MB_2016_0057_15 ER -
%0 Journal Article %A Faisant, Alain %A Grekos, Georges %A Mišík, Ladislav %T Some generalizations of Olivier's theorem %J Mathematica Bohemica %D 2016 %P 483-494 %V 141 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0057-15/ %R 10.21136/MB.2016.0057-15 %G en %F 10_21136_MB_2016_0057_15
Faisant, Alain; Grekos, Georges; Mišík, Ladislav. Some generalizations of Olivier's theorem. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 483-494. doi: 10.21136/MB.2016.0057-15
[1] Bandyopadhyay, S.: Mathematical Analysis: Problems and Solutions. Academic Publishers, Kolkata (2006).
[2] Knopp, K.: Theory and Applications of Infinite Series. Springer, Berlin (1996), German. | Zbl
[3] Kostyrko, P., Šalát, T., Wilczyński, W.: $\scr I$-convergence. Real Anal. Exch. 26 (2001), 669-685. | MR
[4] Krzyž, J.: Olivier's theorem and its generalizations. Pr. Mat. 2 (1956), Polish, Russian 159-164. | MR | Zbl
[5] Olivier, L.: Remarks on infinite series and their convergence. J. Reine Angew. Math. 2 (1827), French 31-44. | MR
[6] Šalát, T., Toma, V.: A classical Olivier's theorem and statistical convergence. Ann. Math. Blaise Pascal 10 (2003), 305-313. | DOI | MR | Zbl
Cité par Sources :