On the preservation of Baire and weakly Baire category
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 475-481
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous.
We consider the question of preservation of Baire and weakly Baire category under images and preimages of certain kind of functions. It is known that Baire category is preserved under image of quasi-continuous feebly open surjections. In order to extend this result, we introduce a strictly larger class of quasi-continuous functions, i.e. the class of quasi-interior continuous functions. We show that Baire and weakly Baire categories are preserved under image of feebly open quasi-interior continuous surjections. We also give a new definition for countably fiber-completeness of a function. We prove that Baire category is preserved under inverse image of a countably fiber-complete function provided that it is feebly open and feebly continuous.
DOI : 10.21136/MB.2016.0053-15
Classification : 54C10, 54E52
Keywords: feebly continuous mapping; quasi-interior continuity; Baire space; weakly Baire space; fiber-completeness
@article{10_21136_MB_2016_0053_15,
     author = {Mirmostafaee, Alireza Kamel and Piotrowski, Zbigniew},
     title = {On the preservation of {Baire} and weakly {Baire} category},
     journal = {Mathematica Bohemica},
     pages = {475--481},
     year = {2016},
     volume = {141},
     number = {4},
     doi = {10.21136/MB.2016.0053-15},
     mrnumber = {3576794},
     zbl = {06674857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-15/}
}
TY  - JOUR
AU  - Mirmostafaee, Alireza Kamel
AU  - Piotrowski, Zbigniew
TI  - On the preservation of Baire and weakly Baire category
JO  - Mathematica Bohemica
PY  - 2016
SP  - 475
EP  - 481
VL  - 141
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-15/
DO  - 10.21136/MB.2016.0053-15
LA  - en
ID  - 10_21136_MB_2016_0053_15
ER  - 
%0 Journal Article
%A Mirmostafaee, Alireza Kamel
%A Piotrowski, Zbigniew
%T On the preservation of Baire and weakly Baire category
%J Mathematica Bohemica
%D 2016
%P 475-481
%V 141
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-15/
%R 10.21136/MB.2016.0053-15
%G en
%F 10_21136_MB_2016_0053_15
Mirmostafaee, Alireza Kamel; Piotrowski, Zbigniew. On the preservation of Baire and weakly Baire category. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 475-481. doi: 10.21136/MB.2016.0053-15

[1] Beer, G., Villar, L.: Weakly Baire spaces. Southeast Asian Bull. Math. 11 (1988), 127-133. | MR | Zbl

[2] Bourbaki, N.: Topologie Générale -- Chapitre 9: Utilisation des Nombres Réels en Topologie Générale. Éléments de Mathématique I: Les Structures Fondamentales de L'analyse -- Livre III Actualités Scientifiques et Industrielles, No. 1045 Hermann & Cie, Paris French (1948). | MR

[3] Cao, J., Moors, W. B.: A survey on topological games and their applications in analysis. RACSAM, Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. 100 (2006), 39-49. | MR | Zbl

[4] Choquet, G.: Lectures on Analysis, vol. 1: Integration and Topological Vector Spaces. Mathematics Lecture Note Series W. A. Benjamin, New York-Amsterdam (1969). | MR | Zbl

[5] Dobo{š}, J.: A note on the invariance of Baire spaces under mappings. Časopis Pěst. Mat. 108 (1983), 409-411. | MR | Zbl

[6] Doboš, J., Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces. Math. Bohem. 119 (1994), 373-379. | MR | Zbl

[7] Fleissner, W. G., Kunen, K.: Barely Baire spaces. Fundam. Math. 101 (1978), 229-240. | DOI | MR | Zbl

[8] Frol{í}k, Z.: Baire spaces and some generalizations of complete metric spaces. Czech. Math. J. 11 (1961), 237-248. | MR | Zbl

[9] Frol{í}k, Z.: Remarks concerning the invariance of Baire spaces under mappings. Czech. Math. J. 11 (1961), 381-385. | MR | Zbl

[10] Mirmostafaee, A. K.: Continuity of separately continuous mappings. Math. Slovaca 64 (2014), 1019-1026. | DOI | MR | Zbl

[11] Moors, W. B.: The product of a Baire space with a hereditarily Baire metric space is Baire. Proc. Am. Math. Soc. 134 (2006), 2161-2163. | DOI | MR | Zbl

[12] Neubrunn, T.: A note on mappings of Baire spaces. Math. Slovaca 27 (1977), 173-176 correction in 442 (1977). | MR | Zbl

[13] Noll, D.: On the preservation of Baire category under preimages. Proc. Am. Math. Soc. 107 (1989), 847-854. | DOI | MR | Zbl

[14] Oxtoby, J. C.: Cartesian products of Baire spaces. Fundam. Math. 49 (1961), 157-166. | DOI | MR | Zbl

[15] Oxtoby, J. C.: Measure and Category---A Survey of the Analogies between Topological and Measure Spaces. Graduate Texts in Mathematics. Vol. 2 Springer, New York (1971). | MR | Zbl

[16] Piotrowski, Z., Reilly, I. L.: Preimages of Baire spaces---an example. Quest. Answers Gen. Topology 11 (1993), 105-107. | MR | Zbl

[17] Rose, D. A., Jankovi{ć}, D. S., Hamlett, T. R.: On weakly Baire spaces. Southeast Asian Bull. Math. 15 (1991), 183-190. | MR | Zbl

[18] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics McGraw-Hill, New York (1991). | MR | Zbl

[19] Sikorski, R.: On the Cartesian product of metric spaces. Fundam. Math. 34 (1947), 288-292. | DOI | MR | Zbl

Cité par Sources :