On multiset colorings of generalized corona graphs
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 431-455.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A vertex $k$-coloring of a graph $G$ is a \emph {multiset $k$-coloring} if $M(u)\neq M(v)$ for every edge $uv\in E(G)$, where $M(u)$ and $M(v)$ denote the multisets of colors of the neighbors of $u$ and $v$, respectively. The minimum $k$ for which $G$ has a multiset $k$-coloring is the \emph {multiset chromatic number} $\chi _{m}(G)$ of $G$. For an integer $\ell \geq 0$, the $\ell $-\emph {corona} of a graph $G$, ${\rm cor}^{\ell }(G)$, is the graph obtained from $G$ by adding, for each vertex $v$ in $G$, $\ell $ new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for \mbox {$\ell $-\emph {coronas}} of all complete graphs, the regular complete multipartite graphs and the Cartesian product $K_{r}\square K_2$ of $K_r$ and $K_2$. In addition, we show that the minimum $\ell $ such that $\chi _{m}({\rm cor}^{\ell }(G))=2$ never exceeds $\chi (G)-2$, where $G$ is a regular graph and $\chi (G)$ is the chromatic number of $G$.
DOI : 10.21136/MB.2016.0053-14
Classification : 05C15
Keywords: multiset coloring; multiset chromatic number; generalized corona of a graph; neighbor-distinguishing coloring
@article{10_21136_MB_2016_0053_14,
     author = {Feng, Yun and Lin, Wensong},
     title = {On multiset colorings of generalized corona graphs},
     journal = {Mathematica Bohemica},
     pages = {431--455},
     publisher = {mathdoc},
     volume = {141},
     number = {4},
     year = {2016},
     doi = {10.21136/MB.2016.0053-14},
     mrnumber = {3576791},
     zbl = {06674854},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/}
}
TY  - JOUR
AU  - Feng, Yun
AU  - Lin, Wensong
TI  - On multiset colorings of generalized corona graphs
JO  - Mathematica Bohemica
PY  - 2016
SP  - 431
EP  - 455
VL  - 141
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/
DO  - 10.21136/MB.2016.0053-14
LA  - en
ID  - 10_21136_MB_2016_0053_14
ER  - 
%0 Journal Article
%A Feng, Yun
%A Lin, Wensong
%T On multiset colorings of generalized corona graphs
%J Mathematica Bohemica
%D 2016
%P 431-455
%V 141
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/
%R 10.21136/MB.2016.0053-14
%G en
%F 10_21136_MB_2016_0053_14
Feng, Yun; Lin, Wensong. On multiset colorings of generalized corona graphs. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 431-455. doi : 10.21136/MB.2016.0053-14. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/

Cité par Sources :