On multiset colorings of generalized corona graphs
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 431-455
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A vertex $k$-coloring of a graph $G$ is a \emph {multiset $k$-coloring} if $M(u)\neq M(v)$ for every edge $uv\in E(G)$, where $M(u)$ and $M(v)$ denote the multisets of colors of the neighbors of $u$ and $v$, respectively. The minimum $k$ for which $G$ has a multiset $k$-coloring is the \emph {multiset chromatic number} $\chi _{m}(G)$ of $G$. For an integer $\ell \geq 0$, the $\ell $-\emph {corona} of a graph $G$, ${\rm cor}^{\ell }(G)$, is the graph obtained from $G$ by adding, for each vertex $v$ in $G$, $\ell $ new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for \mbox {$\ell $-\emph {coronas}} of all complete graphs, the regular complete multipartite graphs and the Cartesian product $K_{r}\square K_2$ of $K_r$ and $K_2$. In addition, we show that the minimum $\ell $ such that $\chi _{m}({\rm cor}^{\ell }(G))=2$ never exceeds $\chi (G)-2$, where $G$ is a regular graph and $\chi (G)$ is the chromatic number of $G$.
DOI :
10.21136/MB.2016.0053-14
Classification :
05C15
Keywords: multiset coloring; multiset chromatic number; generalized corona of a graph; neighbor-distinguishing coloring
Keywords: multiset coloring; multiset chromatic number; generalized corona of a graph; neighbor-distinguishing coloring
@article{10_21136_MB_2016_0053_14,
author = {Feng, Yun and Lin, Wensong},
title = {On multiset colorings of generalized corona graphs},
journal = {Mathematica Bohemica},
pages = {431--455},
publisher = {mathdoc},
volume = {141},
number = {4},
year = {2016},
doi = {10.21136/MB.2016.0053-14},
mrnumber = {3576791},
zbl = {06674854},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/}
}
TY - JOUR AU - Feng, Yun AU - Lin, Wensong TI - On multiset colorings of generalized corona graphs JO - Mathematica Bohemica PY - 2016 SP - 431 EP - 455 VL - 141 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0053-14/ DO - 10.21136/MB.2016.0053-14 LA - en ID - 10_21136_MB_2016_0053_14 ER -
Feng, Yun; Lin, Wensong. On multiset colorings of generalized corona graphs. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 431-455. doi: 10.21136/MB.2016.0053-14
Cité par Sources :