Keywords: spectral valued function; partitioning; spectrum; Weyl-type theorem
@article{10_21136_MB_2016_0046_14,
author = {Berkani, Mohammed},
title = {Abstract {Weyl-type} theorems},
journal = {Mathematica Bohemica},
pages = {495--508},
year = {2016},
volume = {141},
number = {4},
doi = {10.21136/MB.2016.0046-14},
mrnumber = {3576796},
zbl = {06674859},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0046-14/}
}
Berkani, Mohammed. Abstract Weyl-type theorems. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 495-508. doi: 10.21136/MB.2016.0046-14
[1] Aiena, P., Peña, P.: Variations on Weyl's theorem. J. Math. Anal. Appl. 324 (2006), 566-579. | DOI | MR | Zbl
[2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179-185. | DOI | MR | Zbl
[3] Barnes, B. A.: Riesz points and Weyl's theorem. Integral Equations Oper. Theory 34 (1999), 187-196. | DOI | MR | Zbl
[4] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. | DOI | MR | Zbl
[5] Berkani, M.: $B$-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272 (2002), 596-603. | DOI | MR | Zbl
[6] Berkani, M.: Index of $B$-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130 (2002), 1717-1723. | DOI | MR | Zbl
[7] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. | DOI | MR | Zbl
[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. 69 (2003), 359-376. | MR | Zbl
[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. | DOI | MR | Zbl
[10] Berkani, M., Zariouh, H.: Extended Weyl type theorems. Math. Bohem. 134 (2009), 369-378. | MR | Zbl
[11] Berkani, M., Zariouh, H.: New extended Weyl type theorems. Mat. Vesn. 62 (2010), 145-154. | MR | Zbl
[12] Cao, X. H.: A-Browder's theorem and generalized $a$-Weyl's theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. | DOI | MR | Zbl
[13] Curto, R. E., Han, Y. M.: Generalized Browder's and Weyl's theorems for Banach space operators. J. Math. Anal. Appl. 336 (2007), 1424-1442. | DOI | MR | Zbl
[14] Djordjević, D. S.: Operators obeying $a$-Weyl's theorem. Publ. Math. 55 (1999), 283-298. | MR | Zbl
[15] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity. Glasg. Math. J. 42 (2000), 479-486. | DOI | MR | Zbl
[16] Duggal, B. P.: Polaroid operators and generalized Browder-Weyl theorems. Math. Proc. R. Ir. Acad. 108A (2008), 149-163. | DOI | MR | Zbl
[17] Heuser, H. G.: Functional Analysis. John Wiley & Sons Chichester (1982). | MR | Zbl
[18] Rakočević, V.: Operators obeying $a$-Weyl's theorem. Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. | MR
[19] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 German (1909), 373-392, 402. | DOI
Cité par Sources :