Abstract Weyl-type theorems
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 495-508
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.
In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.
DOI : 10.21136/MB.2016.0046-14
Classification : 47A10, 47A11, 47A53
Keywords: spectral valued function; partitioning; spectrum; Weyl-type theorem
@article{10_21136_MB_2016_0046_14,
     author = {Berkani, Mohammed},
     title = {Abstract {Weyl-type} theorems},
     journal = {Mathematica Bohemica},
     pages = {495--508},
     year = {2016},
     volume = {141},
     number = {4},
     doi = {10.21136/MB.2016.0046-14},
     mrnumber = {3576796},
     zbl = {06674859},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0046-14/}
}
TY  - JOUR
AU  - Berkani, Mohammed
TI  - Abstract Weyl-type theorems
JO  - Mathematica Bohemica
PY  - 2016
SP  - 495
EP  - 508
VL  - 141
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0046-14/
DO  - 10.21136/MB.2016.0046-14
LA  - en
ID  - 10_21136_MB_2016_0046_14
ER  - 
%0 Journal Article
%A Berkani, Mohammed
%T Abstract Weyl-type theorems
%J Mathematica Bohemica
%D 2016
%P 495-508
%V 141
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0046-14/
%R 10.21136/MB.2016.0046-14
%G en
%F 10_21136_MB_2016_0046_14
Berkani, Mohammed. Abstract Weyl-type theorems. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 495-508. doi: 10.21136/MB.2016.0046-14

[1] Aiena, P., Peña, P.: Variations on Weyl's theorem. J. Math. Anal. Appl. 324 (2006), 566-579. | DOI | MR | Zbl

[2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179-185. | DOI | MR | Zbl

[3] Barnes, B. A.: Riesz points and Weyl's theorem. Integral Equations Oper. Theory 34 (1999), 187-196. | DOI | MR | Zbl

[4] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. | DOI | MR | Zbl

[5] Berkani, M.: $B$-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272 (2002), 596-603. | DOI | MR | Zbl

[6] Berkani, M.: Index of $B$-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130 (2002), 1717-1723. | DOI | MR | Zbl

[7] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. | DOI | MR | Zbl

[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. 69 (2003), 359-376. | MR | Zbl

[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. | DOI | MR | Zbl

[10] Berkani, M., Zariouh, H.: Extended Weyl type theorems. Math. Bohem. 134 (2009), 369-378. | MR | Zbl

[11] Berkani, M., Zariouh, H.: New extended Weyl type theorems. Mat. Vesn. 62 (2010), 145-154. | MR | Zbl

[12] Cao, X. H.: A-Browder's theorem and generalized $a$-Weyl's theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. | DOI | MR | Zbl

[13] Curto, R. E., Han, Y. M.: Generalized Browder's and Weyl's theorems for Banach space operators. J. Math. Anal. Appl. 336 (2007), 1424-1442. | DOI | MR | Zbl

[14] Djordjević, D. S.: Operators obeying $a$-Weyl's theorem. Publ. Math. 55 (1999), 283-298. | MR | Zbl

[15] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity. Glasg. Math. J. 42 (2000), 479-486. | DOI | MR | Zbl

[16] Duggal, B. P.: Polaroid operators and generalized Browder-Weyl theorems. Math. Proc. R. Ir. Acad. 108A (2008), 149-163. | DOI | MR | Zbl

[17] Heuser, H. G.: Functional Analysis. John Wiley & Sons Chichester (1982). | MR | Zbl

[18] Rakočević, V.: Operators obeying $a$-Weyl's theorem. Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. | MR

[19] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 German (1909), 373-392, 402. | DOI

Cité par Sources :