Diophantine equations involving factorials
Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 181-184
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the Diophantine equations $(k!)^n -k^n = (n!)^k-n^k$ and $(k!)^n +k^n = (n!)^k +n^k,$ where $k$ and $n$ are positive integers. We show that the first one holds if and only if $k=n$ or $(k,n)=(1,2),(2,1)$ and that the second one holds if and only if $k=n$.
We study the Diophantine equations $(k!)^n -k^n = (n!)^k-n^k$ and $(k!)^n +k^n = (n!)^k +n^k,$ where $k$ and $n$ are positive integers. We show that the first one holds if and only if $k=n$ or $(k,n)=(1,2),(2,1)$ and that the second one holds if and only if $k=n$.
DOI : 10.21136/MB.2016.0045-15
Classification : 11D61
Keywords: Diophantine equation; factorial
@article{10_21136_MB_2016_0045_15,
     author = {Alzer, Horst and Luca, Florian},
     title = {Diophantine equations involving factorials},
     journal = {Mathematica Bohemica},
     pages = {181--184},
     year = {2017},
     volume = {142},
     number = {2},
     doi = {10.21136/MB.2016.0045-15},
     mrnumber = {3660174},
     zbl = {06738578},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0045-15/}
}
TY  - JOUR
AU  - Alzer, Horst
AU  - Luca, Florian
TI  - Diophantine equations involving factorials
JO  - Mathematica Bohemica
PY  - 2017
SP  - 181
EP  - 184
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0045-15/
DO  - 10.21136/MB.2016.0045-15
LA  - en
ID  - 10_21136_MB_2016_0045_15
ER  - 
%0 Journal Article
%A Alzer, Horst
%A Luca, Florian
%T Diophantine equations involving factorials
%J Mathematica Bohemica
%D 2017
%P 181-184
%V 142
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0045-15/
%R 10.21136/MB.2016.0045-15
%G en
%F 10_21136_MB_2016_0045_15
Alzer, Horst; Luca, Florian. Diophantine equations involving factorials. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 181-184. doi: 10.21136/MB.2016.0045-15

[1] Andreescu, T., Andrica, D., Cucurezeanu, I.: An Introduction to Diophantine Equations. A Problem-Based Approach. Birkhäuser, Basel (2010). | DOI | MR | JFM

[2] Bashmakova, I. G.: Diophantus and Diophantine Equations. The Dolciani Mathematical Expositions 20. The Mathematical Association of America, Washington (1997). | MR | JFM

[3] Carnal, H.: Aufgaben. Elem. Math. 67 (2012), 151-154. | DOI | JFM

[4] Luca, F.: The Diophantine equation $R(x)=n!$ and a result of M. Overholt. Glas. Mat. (3) 37 (2002), 269-273. | MR | JFM

[5] Luca, F.: On the Diophantine equation $f(n)=u!+v!$. Glas. Mat. (3) 48 (2013), 31-48. | DOI | MR | JFM

[6] Sándor, J.: On some Diophantine equations involving the factorial of a number. Seminar Arghiriade. Univ. Timişoara 21 (1989), 4 pages. | MR | JFM

Cité par Sources :