Some mean value theorems as consequences of the Darboux property
Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 211-224
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of the paper is to present some mean value theorems obtained as consequences of the intermediate value property. First, we will prove that any nonextremum value of a Darboux function can be represented as an arithmetic, geometric or harmonic mean of some different values of this function. Then, we will present some extensions of the Cauchy or Lagrange Theorem in classical or integral form. Also, we include similar results involving divided differences. The paper was motivated by some problems published in mathematical journals.
The aim of the paper is to present some mean value theorems obtained as consequences of the intermediate value property. First, we will prove that any nonextremum value of a Darboux function can be represented as an arithmetic, geometric or harmonic mean of some different values of this function. Then, we will present some extensions of the Cauchy or Lagrange Theorem in classical or integral form. Also, we include similar results involving divided differences. The paper was motivated by some problems published in mathematical journals.
DOI : 10.21136/MB.2016.0032-15
Classification : 26A15, 26A24, 26A42
Keywords: Darboux function; mean value theorem; continuous function; integrable function; differentiable function; arithmetic mean; geometric mean; harmonic mean
@article{10_21136_MB_2016_0032_15,
     author = {Marinescu, Dan \c{S}tefan and Monea, Mihai},
     title = {Some mean value theorems as consequences of the {Darboux} property},
     journal = {Mathematica Bohemica},
     pages = {211--224},
     year = {2017},
     volume = {142},
     number = {2},
     doi = {10.21136/MB.2016.0032-15},
     mrnumber = {3660177},
     zbl = {06738581},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0032-15/}
}
TY  - JOUR
AU  - Marinescu, Dan Ştefan
AU  - Monea, Mihai
TI  - Some mean value theorems as consequences of the Darboux property
JO  - Mathematica Bohemica
PY  - 2017
SP  - 211
EP  - 224
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0032-15/
DO  - 10.21136/MB.2016.0032-15
LA  - en
ID  - 10_21136_MB_2016_0032_15
ER  - 
%0 Journal Article
%A Marinescu, Dan Ştefan
%A Monea, Mihai
%T Some mean value theorems as consequences of the Darboux property
%J Mathematica Bohemica
%D 2017
%P 211-224
%V 142
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0032-15/
%R 10.21136/MB.2016.0032-15
%G en
%F 10_21136_MB_2016_0032_15
Marinescu, Dan Ştefan; Monea, Mihai. Some mean value theorems as consequences of the Darboux property. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 211-224. doi: 10.21136/MB.2016.0032-15

[1] Chen, Z.: A higher mean value theorem. Amer. Math. Monthly 110 (2003), 544-545. | DOI

[2] Garcia, T. M., Suarez, P.: Solution of problem 1867. Mathematics Magazine 85 (2012), page 153. | MR | JFM

[3] Herman, E., Lampakis, E., Witkowski, A.: Solution of problem 956. Coll. Math. J. 43 (2012), 338-339.

[4] Jarník, V.: Über die Differenzierbarkeit stetiger Funktionen. Fundam. Math. 21 (1933), 48-58. | DOI | JFM

[5] Kowalewski, G.: Interpolation und genäherte Quadratur. Eine Ergänzung zu den Lehr- büchern der Differential- und Integralrechnung. B. G. Teubner, Leipzig und Berlin (1932). | JFM

[6] Marinescu, D. Ş.: În legătură cu o problemă de concurs. Recreaţii Matematice 1 (2004), 20-22 (in Romanian).

[7] Marinescu, D. Ş.: Problem 26546. Gazeta Matematică, seria B 12 (2001).

[8] Marinescu, D. Ş., Monea, M., Stroe, M.: Teorema lui Jarnik şi unele consecinţe. Revista de Matematică a Elevilor din Timişoara 4 (2010), 3-8 (in Romanian).

[9] Orno, P.: Problem 1053. Mathematics Magazine 51 (1978), page 245. | DOI | MR

[10] Pangsriiam, P.: Problem 11753. American Mathematical Monthly 121 (2014), page 84.

[11] Plaza, A., Rodriguez, C.: Problem 1867. Mathematics Magazine 84 (2011), page 150.

[12] Precupanu, T.: Problem 5.119. Olimpiadele Naţionale de Matematică 1954-2003 (D. Bă- tineţu, I. Tomescu, eds.). Ed. Enciclopedică, Bucureşti (2004), page 146 (in Romanian).

[13] C. F. Rocca, Jr.: A question of integral. Mat: 450 Senior Seminar (2012).

[14] Sahoo, P. K., Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific, Singapore (1998). | MR | JFM

[15] Thong, Duong Viet: Problem 956. Coll. Math. J. 42 (2011), page 329.

Cité par Sources :