Keywords: $0$-distributive poset; $0$-ideal; $\alpha $-ideal; prime ideal; semiprime ideal; dense ideal
@article{10_21136_MB_2016_0028_14,
author = {Mokbel, Khalid A.},
title = {$0$-ideals in $0$-distributive posets},
journal = {Mathematica Bohemica},
pages = {509--517},
year = {2016},
volume = {141},
number = {4},
doi = {10.21136/MB.2016.0028-14},
mrnumber = {3576797},
zbl = {06674860},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0028-14/}
}
Mokbel, Khalid A. $0$-ideals in $0$-distributive posets. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 509-517. doi: 10.21136/MB.2016.0028-14
[1] Cornish, W. H.: Annulets and $\alpha$-ideals in a distributive lattice. J. Aust. Math. Soc. 15 (1973), 70-77. | DOI | MR | Zbl
[2] Cornish, W. H.: $0$-ideals, congruences, and sheaf representations of distributive lattices. Rev. Roum. Math. Pures Appl. 22 (1977), 1059-1067. | MR | Zbl
[3] Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (1998). | MR
[4] Halaš, R.: Characterization of distributive sets by generalized annihilators. Arch. Math., Brno 30 (1994), 25-27. | MR
[5] Halaš, R., Rachůnek, R. J.: Polars and prime ideals in ordered sets. Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. | MR
[6] Jayaram, C.: $0$-ideals in semilattices. Math. Semin. Notes, Kobe Univ. 8 (1980), 309-319. | MR
[7] Jayaram, C.: Quasicomplemented semilattices. Acta Math. Acad. Sci. Hung. 39 (1982), 39-47. | DOI | MR | Zbl
[8] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets. Math. Bohem. 130 (2005), 73-80. | MR | Zbl
[9] Kharat, V. S., Mokbel, K. A.: Primeness and semiprimeness in posets. Math. Bohem. 134 (2009), 19-30. | MR | Zbl
[10] Mokbel, K. A.: $\alpha$-ideals in $0$-distributive posets. Math. Bohem. (2015), 140 319-328. | MR | Zbl
Cité par Sources :