$0$-ideals in $0$-distributive posets
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 509-517.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The concept of a $0$-ideal in \mbox {$0$-distributive} posets is introduced. Several properties of $0$-ideals in $0$-distributive posets are established. Further, the interrelationships between $0$-ideals and \mbox {$\alpha $-ideals} in \mbox {$0$-distributive} posets are investigated. Moreover, a characterization of prime ideals to be $0$-ideals in $0$-distributive posets is obtained in terms of non-dense ideals. It is shown that every $0$-ideal of a $0$-distributive meet semilattice is semiprime. Several counterexamples are discussed.
DOI : 10.21136/MB.2016.0028-14
Classification : 06A06, 06A75
Keywords: $0$-distributive poset; $0$-ideal; $\alpha $-ideal; prime ideal; semiprime ideal; dense ideal
@article{10_21136_MB_2016_0028_14,
     author = {Mokbel, Khalid A.},
     title = {$0$-ideals in $0$-distributive posets},
     journal = {Mathematica Bohemica},
     pages = {509--517},
     publisher = {mathdoc},
     volume = {141},
     number = {4},
     year = {2016},
     doi = {10.21136/MB.2016.0028-14},
     mrnumber = {3576797},
     zbl = {06674860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0028-14/}
}
TY  - JOUR
AU  - Mokbel, Khalid A.
TI  - $0$-ideals in $0$-distributive posets
JO  - Mathematica Bohemica
PY  - 2016
SP  - 509
EP  - 517
VL  - 141
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0028-14/
DO  - 10.21136/MB.2016.0028-14
LA  - en
ID  - 10_21136_MB_2016_0028_14
ER  - 
%0 Journal Article
%A Mokbel, Khalid A.
%T $0$-ideals in $0$-distributive posets
%J Mathematica Bohemica
%D 2016
%P 509-517
%V 141
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0028-14/
%R 10.21136/MB.2016.0028-14
%G en
%F 10_21136_MB_2016_0028_14
Mokbel, Khalid A. $0$-ideals in $0$-distributive posets. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 509-517. doi : 10.21136/MB.2016.0028-14. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0028-14/

Cité par Sources :