Cardinalities of DCCC normal spaces with a rank 2-diagonal
Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 457-461
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\{\mathcal U_n\colon n\in \omega \}$ of open covers of $X$ such that for each $x \in X$, $\{x\}=\bigcap \{{\rm St}^2(x, \mathcal U_n)\colon n \in \omega \}$. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak c$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta $-diagonal, then the cardinality of $X$ is at most $\mathfrak c$.
A topological space $X$ has a rank 2-diagonal if there exists a diagonal sequence on $X$ of rank $2$, that is, there is a countable family $\{\mathcal U_n\colon n\in \omega \}$ of open covers of $X$ such that for each $x \in X$, $\{x\}=\bigcap \{{\rm St}^2(x, \mathcal U_n)\colon n \in \omega \}$. We say that a space $X$ satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. We mainly prove that if $X$ is a DCCC normal space with a rank 2-diagonal, then the cardinality of $X$ is at most $\mathfrak c$. Moreover, we prove that if $X$ is a first countable DCCC normal space and has a $G_\delta $-diagonal, then the cardinality of $X$ is at most $\mathfrak c$.
DOI : 10.21136/MB.2016.0027-15
Classification : 54D20, 54E35
Keywords: cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_\delta $-diagonal
@article{10_21136_MB_2016_0027_15,
     author = {Xuan, Wei-Feng and Shi, Wei-Xue},
     title = {Cardinalities of {DCCC} normal spaces with a rank 2-diagonal},
     journal = {Mathematica Bohemica},
     pages = {457--461},
     year = {2016},
     volume = {141},
     number = {4},
     doi = {10.21136/MB.2016.0027-15},
     mrnumber = {3576792},
     zbl = {06674855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0027-15/}
}
TY  - JOUR
AU  - Xuan, Wei-Feng
AU  - Shi, Wei-Xue
TI  - Cardinalities of DCCC normal spaces with a rank 2-diagonal
JO  - Mathematica Bohemica
PY  - 2016
SP  - 457
EP  - 461
VL  - 141
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0027-15/
DO  - 10.21136/MB.2016.0027-15
LA  - en
ID  - 10_21136_MB_2016_0027_15
ER  - 
%0 Journal Article
%A Xuan, Wei-Feng
%A Shi, Wei-Xue
%T Cardinalities of DCCC normal spaces with a rank 2-diagonal
%J Mathematica Bohemica
%D 2016
%P 457-461
%V 141
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0027-15/
%R 10.21136/MB.2016.0027-15
%G en
%F 10_21136_MB_2016_0027_15
Xuan, Wei-Feng; Shi, Wei-Xue. Cardinalities of DCCC normal spaces with a rank 2-diagonal. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 457-461. doi: 10.21136/MB.2016.0027-15

[1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. | MR | Zbl

[2] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), 1696-1698. | DOI | MR | Zbl

[3] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). | MR | Zbl

[4] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. | DOI | MR | Zbl

[5] Hodel, R.: Cardinal functions I. Handbook of Set-Theoretic Topology North-Holland VII, Amsterdam K. Kunen et al. 1-61 North-Holland, Amsterdam (1984). | MR | Zbl

[6] Matveev, M.: A survey on star covering properties. Topology Atlas (1998), http://at.yorku.ca/v/a/a/a/19.htm

[7] Shakhmatov, D. B.: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists. Commentat. Math. Univ. Carol. 25 (1984), 731-746. | MR

[8] Uspenskij, V. V.: A large $F_\sigma$-discrete Frechet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260. | MR

[9] Wiscamb, M. R.: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. | DOI | MR | Zbl

[10] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 3-diagonal. Bull. Aust. Math. Soc. 90 (2014), 521-524. | DOI | MR | Zbl

[11] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 2-diagonal. Bull. Aust. Math. Soc. 90 (2014), 141-143. | DOI | MR

Cité par Sources :