Keywords: cardinality; Discrete Countable Chain Condition; normal space; rank 2-diagonal; $G_\delta $-diagonal
@article{10_21136_MB_2016_0027_15,
author = {Xuan, Wei-Feng and Shi, Wei-Xue},
title = {Cardinalities of {DCCC} normal spaces with a rank 2-diagonal},
journal = {Mathematica Bohemica},
pages = {457--461},
year = {2016},
volume = {141},
number = {4},
doi = {10.21136/MB.2016.0027-15},
mrnumber = {3576792},
zbl = {06674855},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0027-15/}
}
TY - JOUR AU - Xuan, Wei-Feng AU - Shi, Wei-Xue TI - Cardinalities of DCCC normal spaces with a rank 2-diagonal JO - Mathematica Bohemica PY - 2016 SP - 457 EP - 461 VL - 141 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0027-15/ DO - 10.21136/MB.2016.0027-15 LA - en ID - 10_21136_MB_2016_0027_15 ER -
Xuan, Wei-Feng; Shi, Wei-Xue. Cardinalities of DCCC normal spaces with a rank 2-diagonal. Mathematica Bohemica, Tome 141 (2016) no. 4, pp. 457-461. doi: 10.21136/MB.2016.0027-15
[1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability. Commentat. Math. Univ. Carol. 47 (2006), 585-597. | MR | Zbl
[2] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), 1696-1698. | DOI | MR | Zbl
[3] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6 Heldermann, Berlin (1989). | MR | Zbl
[4] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. | DOI | MR | Zbl
[5] Hodel, R.: Cardinal functions I. Handbook of Set-Theoretic Topology North-Holland VII, Amsterdam K. Kunen et al. 1-61 North-Holland, Amsterdam (1984). | MR | Zbl
[6] Matveev, M.: A survey on star covering properties. Topology Atlas (1998), http://at.yorku.ca/v/a/a/a/19.htm
[7] Shakhmatov, D. B.: No upper bound for cardinalities of Tychonoff C.C.C. spaces with a $G_\delta $-diagonal exists. Commentat. Math. Univ. Carol. 25 (1984), 731-746. | MR
[8] Uspenskij, V. V.: A large $F_\sigma$-discrete Frechet space having the Souslin property. Commentat. Math. Univ. Carol. 25 (1984), 257-260. | MR
[9] Wiscamb, M. R.: The discrete countable chain condition. Proc. Am. Math. Soc. 23 (1969), 608-612. | DOI | MR | Zbl
[10] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 3-diagonal. Bull. Aust. Math. Soc. 90 (2014), 521-524. | DOI | MR | Zbl
[11] Xuan, W. F., Shi, W. X.: A note on spaces with a rank 2-diagonal. Bull. Aust. Math. Soc. 90 (2014), 141-143. | DOI | MR
Cité par Sources :