Keywords: order in an imaginary quadratic field; order in a quaternion algebra; discretely normed ring; isomorphism; primitive algebra
@article{10_21136_MB_2016_0026_15,
author = {Horn{\'\i}\v{c}ek, Jan and Kure\v{s}, Miroslav and Mac\'alkov\'a, Lenka},
title = {Some properties of orders of quaternion algebras with regard to the discrete norm},
journal = {Mathematica Bohemica},
pages = {385--405},
year = {2016},
volume = {141},
number = {3},
doi = {10.21136/MB.2016.0026-15},
mrnumber = {3557586},
zbl = {06644020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0026-15/}
}
TY - JOUR AU - Horníček, Jan AU - Kureš, Miroslav AU - Macálková, Lenka TI - Some properties of orders of quaternion algebras with regard to the discrete norm JO - Mathematica Bohemica PY - 2016 SP - 385 EP - 405 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0026-15/ DO - 10.21136/MB.2016.0026-15 LA - en ID - 10_21136_MB_2016_0026_15 ER -
%0 Journal Article %A Horníček, Jan %A Kureš, Miroslav %A Macálková, Lenka %T Some properties of orders of quaternion algebras with regard to the discrete norm %J Mathematica Bohemica %D 2016 %P 385-405 %V 141 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0026-15/ %R 10.21136/MB.2016.0026-15 %G en %F 10_21136_MB_2016_0026_15
Horníček, Jan; Kureš, Miroslav; Macálková, Lenka. Some properties of orders of quaternion algebras with regard to the discrete norm. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 385-405. doi: 10.21136/MB.2016.0026-15
[1] Cohn, P. M.: On the structure of the {$ GL_2$} of a ring. Publ. Math., Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5-53. | DOI | MR
[2] James, D. G.: Quaternion algebras, arithmetic Kleinian groups and {$\bold Z$}-lattices. Pac. J. Math. 203 (2002), 395-413. | DOI | MR
[3] Kato, K., Kurokawa, N., Saito, T.: Number Theory I. Fermat's Dream. Translations of Mathematical Monographs. Iwanami Series in Modern Mathematics 186 AMS, Providence (2000). | MR
[4] Kureš, M., Skula, L.: Reduction of matrices over orders of imaginary quadratic fields. Linear Algebra Appl. 435 (2011), 1903-1919. | MR | Zbl
[5] Maclachlan, C., Reid, A. W.: The Arithmetic of Hyperbolic 3-Manifolds. Graduate Texts in Mathematics 219 Springer, New York (2003). | MR | Zbl
[6] Voight, J.: Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms. Quadratic and Higher Degree Forms Developments in Mathematics 31 Springer, New York (2013), 255-298 K. Alladi et al. | MR | Zbl
Cité par Sources :