On the strongly ambiguous classes of some biquadratic number fields
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
DOI : 10.21136/MB.2016.0022-14
Classification : 11R11, 11R16, 11R20, 11R27, 11R29, 11R37
Keywords: absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
@article{10_21136_MB_2016_0022_14,
     author = {Azizi, Abdelmalek and Zekhnini, Abdelkader and Taous, Mohammed},
     title = {On the strongly ambiguous classes of some biquadratic number fields},
     journal = {Mathematica Bohemica},
     pages = {363--384},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2016},
     doi = {10.21136/MB.2016.0022-14},
     mrnumber = {3557585},
     zbl = {06644019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/}
}
TY  - JOUR
AU  - Azizi, Abdelmalek
AU  - Zekhnini, Abdelkader
AU  - Taous, Mohammed
TI  - On the strongly ambiguous classes of some biquadratic number fields
JO  - Mathematica Bohemica
PY  - 2016
SP  - 363
EP  - 384
VL  - 141
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/
DO  - 10.21136/MB.2016.0022-14
LA  - en
ID  - 10_21136_MB_2016_0022_14
ER  - 
%0 Journal Article
%A Azizi, Abdelmalek
%A Zekhnini, Abdelkader
%A Taous, Mohammed
%T On the strongly ambiguous classes of some biquadratic number fields
%J Mathematica Bohemica
%D 2016
%P 363-384
%V 141
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/
%R 10.21136/MB.2016.0022-14
%G en
%F 10_21136_MB_2016_0022_14
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. On the strongly ambiguous classes of some biquadratic number fields. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384. doi : 10.21136/MB.2016.0022-14. http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/

Cité par Sources :