On the strongly ambiguous classes of some biquadratic number fields
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
DOI :
10.21136/MB.2016.0022-14
Classification :
11R11, 11R16, 11R20, 11R27, 11R29, 11R37
Keywords: absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
Keywords: absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
@article{10_21136_MB_2016_0022_14,
author = {Azizi, Abdelmalek and Zekhnini, Abdelkader and Taous, Mohammed},
title = {On the strongly ambiguous classes of some biquadratic number fields},
journal = {Mathematica Bohemica},
pages = {363--384},
year = {2016},
volume = {141},
number = {3},
doi = {10.21136/MB.2016.0022-14},
mrnumber = {3557585},
zbl = {06644019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/}
}
TY - JOUR AU - Azizi, Abdelmalek AU - Zekhnini, Abdelkader AU - Taous, Mohammed TI - On the strongly ambiguous classes of some biquadratic number fields JO - Mathematica Bohemica PY - 2016 SP - 363 EP - 384 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/ DO - 10.21136/MB.2016.0022-14 LA - en ID - 10_21136_MB_2016_0022_14 ER -
%0 Journal Article %A Azizi, Abdelmalek %A Zekhnini, Abdelkader %A Taous, Mohammed %T On the strongly ambiguous classes of some biquadratic number fields %J Mathematica Bohemica %D 2016 %P 363-384 %V 141 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/ %R 10.21136/MB.2016.0022-14 %G en %F 10_21136_MB_2016_0022_14
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. On the strongly ambiguous classes of some biquadratic number fields. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384. doi: 10.21136/MB.2016.0022-14
Cité par Sources :