On the strongly ambiguous classes of some biquadratic number fields
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
We study the capitulation of \mbox {$2$-ideal} classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk =\Bbb Q(\sqrt {2pq}, {\rm i})$, where ${\rm i}=\sqrt {-1}$ and $p\equiv -q\equiv 1 \pmod 4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk $ inside the absolute genus field $\Bbbk ^{(*)}$ of $\Bbbk $, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk $. The generators of the groups ${\rm Am}_s(\Bbbk /F)$ and ${\rm Am}(\Bbbk /F)$ are also determined from which we deduce that $\Bbbk ^{(*)}$ is smaller than the relative genus field $(\Bbbk /\Bbb Q({\rm i}))^*$. Then we prove that each strongly ambiguous class of $\Bbbk /\Bbb Q({\rm i})$ capitulates already in $\Bbbk ^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).
DOI : 10.21136/MB.2016.0022-14
Classification : 11R11, 11R16, 11R20, 11R27, 11R29, 11R37
Keywords: absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field
@article{10_21136_MB_2016_0022_14,
     author = {Azizi, Abdelmalek and Zekhnini, Abdelkader and Taous, Mohammed},
     title = {On the strongly ambiguous classes of some biquadratic number fields},
     journal = {Mathematica Bohemica},
     pages = {363--384},
     year = {2016},
     volume = {141},
     number = {3},
     doi = {10.21136/MB.2016.0022-14},
     mrnumber = {3557585},
     zbl = {06644019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/}
}
TY  - JOUR
AU  - Azizi, Abdelmalek
AU  - Zekhnini, Abdelkader
AU  - Taous, Mohammed
TI  - On the strongly ambiguous classes of some biquadratic number fields
JO  - Mathematica Bohemica
PY  - 2016
SP  - 363
EP  - 384
VL  - 141
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/
DO  - 10.21136/MB.2016.0022-14
LA  - en
ID  - 10_21136_MB_2016_0022_14
ER  - 
%0 Journal Article
%A Azizi, Abdelmalek
%A Zekhnini, Abdelkader
%A Taous, Mohammed
%T On the strongly ambiguous classes of some biquadratic number fields
%J Mathematica Bohemica
%D 2016
%P 363-384
%V 141
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0022-14/
%R 10.21136/MB.2016.0022-14
%G en
%F 10_21136_MB_2016_0022_14
Azizi, Abdelmalek; Zekhnini, Abdelkader; Taous, Mohammed. On the strongly ambiguous classes of some biquadratic number fields. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 363-384. doi: 10.21136/MB.2016.0022-14

[1] Azizi, A.: On the capitulation of the 2-class group of $\Bbbk=\Bbb Q(\sqrt2pq, i)$ where $p\equiv-q\equiv1\bmod4$. Acta Arith. 94 French (2000), 383-399. | MR

[2] Azizi, A.: Units of certain imaginary abelian number fields over $\Bbb Q$. Ann. Sci. Math. Qué. 23 French (1999), 15-21. | MR | Zbl

[3] Azizi, A., Taous, M.: Determination of the fields $\Bbbk=\Bbb Q(\sqrt d,\sqrt{-1})$ given the 2-class groups are of type $(2,4)$ or $(2,2,2)$. Rend. Ist. Mat. Univ. Trieste 40 French (2008), 93-116. | MR

[4] Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of $\Bbbk/\Bbb Q( i)$ where $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$. Asian-Eur. J. Math. 7 (2014), Article ID 1450021, 26 pages. | MR

[5] Azizi, A., Zekhnini, A., Taous, M.: Structure of $ Gal(\Bbbk_2^{(2)}/\Bbbk)$ for some fields $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$ with $ Cl_2(\Bbbk)\simeq(2,2,2)$. Abh. Math. Semin. Univ. Hamb. 84 (2014), 203-231. | MR

[6] Azizi, A., Zekhnini, A., Taous, M.: On the generators of the \mbox{$2$-class} group of the field $\Bbbk=\Bbb Q(\sqrt{d}, i)$. Int. J. of Pure and Applied Math. 81 (2012), 773-784. | MR

[7] Azizi, A., Zekhnini, A., Taous, M.: On the unramified quadratic and biquadratic extensions of the field $\Bbb Q(\sqrt d, i)$. Int. J. Algebra 6 (2012), 1169-1173. | MR | Zbl

[8] Chevalley, C.: Sur la théorie du corps de classes dans les corps finis et les corps locaux. J. Fac. Sci., Univ. Tokyo, Sect. (1) 2 French (1933), 365-476. | Zbl

[9] Furuya, H.: Principal ideal theorems in the genus field for absolutely Abelian extensions. J. Number Theory 9 (1977), 4-15. | DOI | MR | Zbl

[10] Gras, G.: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics Springer, Berlin (2003). | MR | Zbl

[11] Hasse, H.: On the class number of abelian number fields. Mathematische Lehrbücher und Monographien I Akademie, Berlin German (1952). | MR | Zbl

[12] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 German (1982), 1-25. | MR | Zbl

[13] Hirabayashi, M., Yoshino, K.-I.: Unit indices of imaginary abelian number fields of type $(2,2,2)$. J. Number Theory 34 (1990), 346-361. | DOI | MR | Zbl

[14] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 German (1956), 65-85. | DOI | MR | Zbl

[15] Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28 (2013), 415-421. | MR

[16] Louboutin, S.: Hasse unit indices of dihedral octic CM-fields. Math. Nachr. 215 (2000), 107-113. | DOI | MR | Zbl

[17] McCall, T. M., Parry, C. J., Ranalli, R.: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99. | DOI | MR | Zbl

[18] Sime, P. J.: On the ideal class group of real biquadratic fields. Trans. Am. Math. Soc. 347 (1995), 4855-4876. | DOI | MR | Zbl

[19] Terada, F.: A principal ideal theorem in the genus field. Tohoku Math. J. (2) 23 (1971), 697-718. | DOI | MR | Zbl

[20] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. (1) 13 (1966), 201-209. | MR | Zbl

Cité par Sources :