Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 297-313
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb {C}\cup \{\infty \}$ we denote by $E_{k}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\leq k$ and $k+1$ times if $m>k$. If $E_{k}(a;f)= E_{k}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).
Let $k$ be a nonnegative integer or infinity. For $a\in \mathbb {C}\cup \{\infty \}$ we denote by $E_{k}(a;f)$ the set of all $a$-points of $f$ where an $a$-point of multiplicity $m$ is counted $m$ times if $m\leq k$ and $k+1$ times if $m>k$. If $E_{k}(a;f)= E_{k}(a;g)$ then we say that $f$ and $g$ share the value $a$ with weight $k$. Using this idea of sharing values we study the uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a nonzero polynomial with finite weight. The results of the paper improve and generalize the related results due to Xia and Xu (2011) and the results of Li and Yi (2011).
DOI : 10.21136/MB.2016.0018-14
Classification : 30D35
Keywords: uniqueness; meromorphic function; differential polynomial; weighted sharing
@article{10_21136_MB_2016_0018_14,
     author = {Sahoo, Pulak},
     title = {Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial},
     journal = {Mathematica Bohemica},
     pages = {297--313},
     year = {2016},
     volume = {141},
     number = {3},
     doi = {10.21136/MB.2016.0018-14},
     mrnumber = {3557581},
     zbl = {06644015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0018-14/}
}
TY  - JOUR
AU  - Sahoo, Pulak
TI  - Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
JO  - Mathematica Bohemica
PY  - 2016
SP  - 297
EP  - 313
VL  - 141
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0018-14/
DO  - 10.21136/MB.2016.0018-14
LA  - en
ID  - 10_21136_MB_2016_0018_14
ER  - 
%0 Journal Article
%A Sahoo, Pulak
%T Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial
%J Mathematica Bohemica
%D 2016
%P 297-313
%V 141
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0018-14/
%R 10.21136/MB.2016.0018-14
%G en
%F 10_21136_MB_2016_0018_14
Sahoo, Pulak. Uniqueness and differential polynomials of meromorphic functions sharing a nonzero polynomial. Mathematica Bohemica, Tome 141 (2016) no. 3, pp. 297-313. doi: 10.21136/MB.2016.0018-14

[1] Banerjee, A.: Uniqueness of certain non-linear differential polynomials sharing 1-points. Kyungpook Math. J. 51 (2011), 43-58. | DOI | MR | Zbl

[2] Banerjee, A.: Meromorphic functions sharing one value. Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. | DOI | MR | Zbl

[3] Bhoosnurmath, S. S., Dyavanal, R. S.: Uniqueness and value-sharing of meromorphic functions. Comput. Math. Appl. 53 (2007), 1191-1205. | DOI | MR | Zbl

[4] Fang, M.-L.: Uniqueness and value-sharing of entire functions. Comput. Math. Appl. 44 (2002), 823-831. | DOI | MR | Zbl

[5] Fang, C.-Y., Fang, M.-L.: Uniqueness of meromorphic functions and differential polynomials. Comput. Math. Appl. 44 (2002), 607-617. | DOI | MR | Zbl

[6] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs Clarendon Press, Oxford (1964). | MR | Zbl

[7] Lahiri, I.: On a question of Hong Xun Yi. Arch. Math., Brno 38 (2002), 119-128. | MR | Zbl

[8] Lahiri, I.: Value distribution of certain differential polynomials. Int. J. Math. Math. Sci. 28 (2001), 83-91. | DOI | MR | Zbl

[9] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253. | DOI | MR | Zbl

[10] Lahiri, I.: Uniqueness of meromorphic functions as governed by their differential polynomials. Yokohama Math. J. 44 (1997), 147-156. | MR | Zbl

[11] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative. Kodai Math. J. 26 (2003), 95-100. | DOI | MR | Zbl

[12] Li, X.-M., Yi, H.-X.: Uniqueness of meromorphic functions whose certain nonlinear differential polynomials share a polynomial. Comput. Math. Appl. 62 (2011), 539-550. | DOI | MR | Zbl

[13] Lin, W., Yi, H.: Uniqueness theorems for meromorphic functions concerning fixed-points. Complex Variables, Theory Appl. 49 (2004), 793-806. | DOI | MR | Zbl

[14] Sahoo, P.: Uniqueness and weighted sharing of meromorphic functions. Ann. Pol. Math. 100 (2011), 127-145. | DOI | MR | Zbl

[15] Sahoo, P.: Meromorphic functions that share fixed points with finite weights. Bull. Math. Anal. Appl. (electronic only) 2 (2010), 106-118. | MR | Zbl

[16] Xia, J., Xu, Y.: Uniqueness and differential polynomials of meromorphic functions sharing one value. Filomat 25 (2011), 185-194. | DOI | MR | Zbl

[17] Yang, C. C.: On deficiencies of differential polynomials, II. Math. Z. 125 (1972), 107-112. | DOI | MR | Zbl

[18] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications 557 Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2003). | MR | Zbl

[19] Zhang, J.-L., Yang, L.-Z.: Some results related to a conjecture of R. Brück. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 8 (2007), Article No. 18, 11 pages. | MR | Zbl

Cité par Sources :