On the equivalence of differential operators of infinite order with constant coefficients
Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 137-143
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the conditions of equivalence of a differential operator of infinite order with constant coefficients to the operator of differentiation in one space of analytic functions. We also study the conditions of continuity of a differential operator of infinite order with variable coefficients in such space.
We investigate the conditions of equivalence of a differential operator of infinite order with constant coefficients to the operator of differentiation in one space of analytic functions. We also study the conditions of continuity of a differential operator of infinite order with variable coefficients in such space.
DOI : 10.21136/MB.2016.0007-16
Classification : 47B38
Keywords: space of analytic functions; operator of differentiation of infinite order; equivalence of operators; commutant
@article{10_21136_MB_2016_0007_16,
     author = {Linchuk, Yuriy},
     title = {On the equivalence of differential operators of infinite order with constant coefficients},
     journal = {Mathematica Bohemica},
     pages = {137--143},
     year = {2017},
     volume = {142},
     number = {2},
     doi = {10.21136/MB.2016.0007-16},
     mrnumber = {3660171},
     zbl = {06738575},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/}
}
TY  - JOUR
AU  - Linchuk, Yuriy
TI  - On the equivalence of differential operators of infinite order with constant coefficients
JO  - Mathematica Bohemica
PY  - 2017
SP  - 137
EP  - 143
VL  - 142
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/
DO  - 10.21136/MB.2016.0007-16
LA  - en
ID  - 10_21136_MB_2016_0007_16
ER  - 
%0 Journal Article
%A Linchuk, Yuriy
%T On the equivalence of differential operators of infinite order with constant coefficients
%J Mathematica Bohemica
%D 2017
%P 137-143
%V 142
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/
%R 10.21136/MB.2016.0007-16
%G en
%F 10_21136_MB_2016_0007_16
Linchuk, Yuriy. On the equivalence of differential operators of infinite order with constant coefficients. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 137-143. doi: 10.21136/MB.2016.0007-16

[1] Delsartes, J.: Sur certaines transformations fonctionnelles rélatives aux équations linéaires aux dérivées partielles du second ordre. C. R. Acad. Sci. Paris 206 (1938), 1780-1782. | JFM

[2] Delsarte, J., Lions, J. L.: Transmutations d'opérateurs différentiels dans le domaine complexe. Comment. Math. Helv. 32 (1957), 113-128. | DOI | MR | JFM

[3] Fage, M. K.: Über die "Aquivalenz zweier gewöhnlicher linearer Differentialoperatoren mit analytischen Koeffizienten. Issled. Sovrem. Probl. Teor. Funkts. Kompleksn. Perem., IV. Vses. Konf. Mosk. Univ. (1958), 468-476 (in Russian). | JFM

[4] Fišman, K. M.: Equivalence of certain linear operators in an analytic space. Mat. Sb. (N.S.) 68 (110) (1965), 63-74 (in Russian). | MR | JFM

[5] Nagnibida, N. I., Oliĭnyk, N. P.: On the equivalence of differential operators of infinite order in analytic spaces. Math. Notes 21 (1977), 19-21. | DOI | MR | JFM

[6] Linchuk, Y. S.: Commutants of composition operators induced by a parabolic linear fractional automorphisms of the unit disk. Fract. Calc. Appl. Anal. 15 (2012), 25-33. | DOI | MR | JFM

[7] Maldonado, M., Prada, J., Senosiain, M. J.: On differential operators of infinite order in sequence spaces. Proc. 6th Int. workshop On Group Analysis of Differential Equations and Integrable Systems, Cyprus 2012 (O. O. Vaneeva et al., eds.) Department of Mathematics and Statistics, University of Cyprus, Nicosia (2013), 142-146. | MR | JFM

[8] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics 2. The Clarendon Press, Oxford (1997). | MR | JFM

Cité par Sources :