Keywords: space of analytic functions; operator of differentiation of infinite order; equivalence of operators; commutant
@article{10_21136_MB_2016_0007_16,
author = {Linchuk, Yuriy},
title = {On the equivalence of differential operators of infinite order with constant coefficients},
journal = {Mathematica Bohemica},
pages = {137--143},
year = {2017},
volume = {142},
number = {2},
doi = {10.21136/MB.2016.0007-16},
mrnumber = {3660171},
zbl = {06738575},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/}
}
TY - JOUR AU - Linchuk, Yuriy TI - On the equivalence of differential operators of infinite order with constant coefficients JO - Mathematica Bohemica PY - 2017 SP - 137 EP - 143 VL - 142 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/ DO - 10.21136/MB.2016.0007-16 LA - en ID - 10_21136_MB_2016_0007_16 ER -
%0 Journal Article %A Linchuk, Yuriy %T On the equivalence of differential operators of infinite order with constant coefficients %J Mathematica Bohemica %D 2017 %P 137-143 %V 142 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0007-16/ %R 10.21136/MB.2016.0007-16 %G en %F 10_21136_MB_2016_0007_16
Linchuk, Yuriy. On the equivalence of differential operators of infinite order with constant coefficients. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 137-143. doi: 10.21136/MB.2016.0007-16
[1] Delsartes, J.: Sur certaines transformations fonctionnelles rélatives aux équations linéaires aux dérivées partielles du second ordre. C. R. Acad. Sci. Paris 206 (1938), 1780-1782. | JFM
[2] Delsarte, J., Lions, J. L.: Transmutations d'opérateurs différentiels dans le domaine complexe. Comment. Math. Helv. 32 (1957), 113-128. | DOI | MR | JFM
[3] Fage, M. K.: Über die "Aquivalenz zweier gewöhnlicher linearer Differentialoperatoren mit analytischen Koeffizienten. Issled. Sovrem. Probl. Teor. Funkts. Kompleksn. Perem., IV. Vses. Konf. Mosk. Univ. (1958), 468-476 (in Russian). | JFM
[4] Fišman, K. M.: Equivalence of certain linear operators in an analytic space. Mat. Sb. (N.S.) 68 (110) (1965), 63-74 (in Russian). | MR | JFM
[5] Nagnibida, N. I., Oliĭnyk, N. P.: On the equivalence of differential operators of infinite order in analytic spaces. Math. Notes 21 (1977), 19-21. | DOI | MR | JFM
[6] Linchuk, Y. S.: Commutants of composition operators induced by a parabolic linear fractional automorphisms of the unit disk. Fract. Calc. Appl. Anal. 15 (2012), 25-33. | DOI | MR | JFM
[7] Maldonado, M., Prada, J., Senosiain, M. J.: On differential operators of infinite order in sequence spaces. Proc. 6th Int. workshop On Group Analysis of Differential Equations and Integrable Systems, Cyprus 2012 (O. O. Vaneeva et al., eds.) Department of Mathematics and Statistics, University of Cyprus, Nicosia (2013), 142-146. | MR | JFM
[8] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics 2. The Clarendon Press, Oxford (1997). | MR | JFM
Cité par Sources :