Keywords: Hermite-Hermite polynomials; matrix generating functions; orthogonality property; Rodrigues formula; associated Hermite-Hermite polynomials; generalized Hermite-Hermite matrix polynomials
@article{10_21136_MB_2016_0001_15,
author = {Shehata, Ayman and Upadhyaya, Lalit Mohan},
title = {Some relations satisfied by {Hermite-Hermite} matrix polynomials},
journal = {Mathematica Bohemica},
pages = {145--162},
year = {2017},
volume = {142},
number = {2},
doi = {10.21136/MB.2016.0001-15},
mrnumber = {3660172},
zbl = {06738576},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0001-15/}
}
TY - JOUR AU - Shehata, Ayman AU - Upadhyaya, Lalit Mohan TI - Some relations satisfied by Hermite-Hermite matrix polynomials JO - Mathematica Bohemica PY - 2017 SP - 145 EP - 162 VL - 142 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0001-15/ DO - 10.21136/MB.2016.0001-15 LA - en ID - 10_21136_MB_2016_0001_15 ER -
%0 Journal Article %A Shehata, Ayman %A Upadhyaya, Lalit Mohan %T Some relations satisfied by Hermite-Hermite matrix polynomials %J Mathematica Bohemica %D 2017 %P 145-162 %V 142 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2016.0001-15/ %R 10.21136/MB.2016.0001-15 %G en %F 10_21136_MB_2016_0001_15
Shehata, Ayman; Upadhyaya, Lalit Mohan. Some relations satisfied by Hermite-Hermite matrix polynomials. Mathematica Bohemica, Tome 142 (2017) no. 2, pp. 145-162. doi: 10.21136/MB.2016.0001-15
[1] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations. Util. Math. 61 (2002), 107-123. | MR | JFM
[2] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties. Comput. Math. Appl. 48 (2004), 789-803. | DOI | MR | JFM
[3] Defez, E., Jódar, L., Law, A., Ponsoda, E.: Three-term recurrences and matrix orthogonal polynomials. Util. Math. 57 (2000), 129-146. | MR | JFM
[4] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). | MR | JFM
[5] Durán, A. J., Assche, W. Van: Orthogonal matrix polynomials and higher-order recurrence relations. Linear Algebra Appl. 219 (1995), 261-280. | DOI | MR | JFM
[6] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations. Approximation Theory Appl. 12 (1996), 20-30. | MR | JFM
[7] Jódar, L., Company, R., Navarro, E.: Laguerre matrix polynomials and system of second-order differential equations. Appl. Numer. Math. 15 (1994), 53-63. | DOI | MR | JFM
[8] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations. Differ. Equ. Dyn. Syst. 3 (1995), 269-288. | MR | JFM
[9] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix function. Approximation Theory Appl. 14 (1998), 36-48. | MR | JFM
[10] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials. Asian J. Current Engineering and Maths. (AJCEM) 1 (2012), 232-240.
[11] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials. Math. Bohem. 133 (2008), 421-434. | MR | JFM
[12] Metwally, M. S., Mohamed, M. T., Shehata, A.: On pseudo Hermite matrix polynomials of two variables. Banach J. Math. Anal. (eletronic only) 4 (2010), 169-178. | DOI | MR | JFM
[13] Rainville, E. D.: Special Functions. Macmillan, New York (1960). | MR | JFM
[14] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: On generalized Hermite matrix polynomials. Electron. J. Linear Algebra (eletronic only) 10 (2003), 272-279. | MR | JFM
[15] Shehata, A.: On $p$ and $q$-Horn's matrix function of two complex variables. Appl. Math., Irvine 2 (2011), 1437-1442. | DOI | MR
[16] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable. Commun. Math. Appl. 2 (2011), 97-109. | MR | JFM
[17] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties. Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. | MR
[18] Shehata, A.: A new extension of Hermite-Hermite matrix polynomials and their properties. Thai J. Math. 10 (2012), 433-444. | MR | JFM
[19] Shehata, A.: On pseudo Legendre matrix polynomials. Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. | MR
[20] Shehata, A.: Certain $pl(m,n)$-Kummer matrix function of two complex variables under differential operator. Appl. Math., Irvine 4 (2013), 91-96. | DOI
[21] Shehata, A.: On Rainville's matrix polynomials. Sylwan Journal 158 (2014), 158-178. | MR
[22] Shehata, A.: On Rice's matrix polynomials. Afr. Mat. 25 (2014), 757-777. | DOI | MR | JFM
[23] Shehata, A.: Connections between Legendre with Hermite and Laguerre matrix polynomials. Gazi University Journal of Science 28 (2015), 221-230. Avaible at http://gujs.gazi.edu.tr/article/view/1060001688/5000116963
[24] Shehata, A.: New kinds of hypergeometric matrix functions. British Journal of Mathematics and Computer Science. 5 (2015), 92-103. | DOI | MR
[25] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials. Mitteilungen Klosterneuburg J. 65 (2015), 100-121.
[26] Shehata, A.: Some relations on Gegenbauer matrix polynomials. Review of Computer Engineering Research 2 (2015), 1-21. Avaible at http://www.pakinsight.com/pdf-files/RCER-2015-2\%281\%29-1-21.pdf | DOI
[27] Shehata, A.: Some relations on Humbert matrix polynomials. Math. Bohem. 141 (2016), 407-429. | DOI | MR | JFM
[28] Shehata, A.: Some relations on Konhauser matrix polynomials. Miskolc Math. Notes 17 (2016), 605-633. | DOI | MR
[29] Sinap, A., Assche, W. Van: Orthogonal matrix polynomials and applications. Proc. 6th Int. Congress on Computational and Applied Mathematics (F. Broeckx at al., eds). Leuven, 1994 J. Comput. Appl. Math. 66, Elsevier Science, Amsterdam (1996), 27-52. | DOI | MR | JFM
[30] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications. Inter. Tran. Math. Sci. Comput. 4 (2011), 291-310. | MR
[31] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. | DOI | MR | JFM
Cité par Sources :