Some Hölder-logarithmic estimates on Hardy-Sobolev spaces
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 787-800
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces $H^{k,p}(G)$, where $k \in {\mathbb N}^*$, $1\leq p\leq \infty $ and $G$ is either the open unit disk ${\mathbb D}$ or the annular domain $G_s$, $0
We prove some optimal estimates of Hölder-logarithmic type in the Hardy-Sobolev spaces $H^{k,p}(G)$, where $k \in {\mathbb N}^*$, $1\leq p\leq \infty $ and $G$ is either the open unit disk ${\mathbb D}$ or the annular domain $G_s$, $0$ of the complex space ${\mathbb C}$. More precisely, we study the behavior on the interior of $G$ of any function $f$ belonging to the unit ball of the Hardy-Sobolev spaces $H^{k,p}(G)$ from its behavior on any open connected subset $I$ of the boundary $\partial G$ of $G$ with respect to the $L^1$-norm. Our results can be viewed as an improvement and generalization of those established in S. Chaabane, I. Feki (2009), I. Feki, H. Nfata, F. Wielonsky (2012), I. Feki (2013), I. Feki, H. Nfata (2014). As an application, we establish a logarithmic stability results for the Cauchy problem of the identification of Robin's coefficient by boundary measurements.
DOI : 10.21136/CMJ.2024.0552-23
Classification : 30C40, 30H05, 30H10, 35R30
Keywords: Hardy-Sobolev space; annular domain; Kernel function
@article{10_21136_CMJ_2024_0552_23,
     author = {Feki, Imed and Massoudi, Ameni},
     title = {Some {H\"older-logarithmic} estimates on {Hardy-Sobolev} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {787--800},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0552-23},
     mrnumber = {4804960},
     zbl = {07953678},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0552-23/}
}
TY  - JOUR
AU  - Feki, Imed
AU  - Massoudi, Ameni
TI  - Some Hölder-logarithmic estimates on Hardy-Sobolev spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 787
EP  - 800
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0552-23/
DO  - 10.21136/CMJ.2024.0552-23
LA  - en
ID  - 10_21136_CMJ_2024_0552_23
ER  - 
%0 Journal Article
%A Feki, Imed
%A Massoudi, Ameni
%T Some Hölder-logarithmic estimates on Hardy-Sobolev spaces
%J Czechoslovak Mathematical Journal
%D 2024
%P 787-800
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0552-23/
%R 10.21136/CMJ.2024.0552-23
%G en
%F 10_21136_CMJ_2024_0552_23
Feki, Imed; Massoudi, Ameni. Some Hölder-logarithmic estimates on Hardy-Sobolev spaces. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 787-800. doi: 10.21136/CMJ.2024.0552-23

[1] Alessandrini, G., Piere, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement. Inverse Probl. 19 (2003), 973-984. | DOI | MR | JFM

[2] Baratchart, L., Mandréa, F., Saff, E. B., Wielonsky, F.: 2D inverse problems for the Laplacian: A meromorphic approximation approach. J. Math. Pures Appl. (9) 86 (2006), 1-41. | DOI | MR | JFM

[3] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math. 46 (1993), 255-269. | DOI | MR | JFM

[4] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. | DOI | MR | JFM

[5] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. | DOI | MR | JFM

[6] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. | MR | JFM

[7] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics 38. Academic Press, New York (1970). | DOI | MR | JFM

[8] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result. Czech. Math. J. 63 (2013), 481-495. | DOI | MR | JFM

[9] Feki, I., Nfata, H.: On $L^p-L^1$ estimates of logarithmic-type in Hardy-Sobolev spaces of the disk and the annulus. J. Math. Anal. Appl. 419 (2014), 1248-1260. | DOI | MR | JFM

[10] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results. J. Math. Anal. Appl. 395 (2012), 366-375. | DOI | MR | JFM

[11] Hardy, G. H.: The mean value of the modulus of an analytic function. Proc. Lond. Math. Soc. (2) 14 (1915), 269-277 \99999JFM99999 45.1331.03. | DOI

[12] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: Stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. | DOI | MR | JFM

[13] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. | DOI | MR | JFM

[14] Miller, P. D.: Applied Asymptotic Analysis. Graduate Studies in Mathematics 75. AMS, Providence (2006). | DOI | MR | JFM

[15] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. | MR | JFM

[16] Rudin, W.: Analytic functions of class $H_p$. Trans. Am. Math. Soc. 78 (1955), 46-66. | DOI | MR | JFM

[17] Sarason, D.: The $H^p$ spaces of an annulus. Mem. Am. Math. Soc. 56 (1965), 78 pages. | DOI | MR | JFM

[18] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Austr. Math. Soc. 27 (1983), 91-105. | DOI | MR | JFM

Cité par Sources :