Higher-dimensional Auslander-Reiten sequences
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 771-786
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Zhou and Zhu have shown that if $\mathscr {C}$ is an $(n+2)$-angulated category and $\mathscr {X}$ is a cluster tilting subcategory of $\mathscr{C}$, then the quotient category $\mathscr {C}/\mathscr {X}$ is an $n$-abelian category. We show that if $\mathscr {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathscr {C}/\mathscr {X}$ has Auslander-Reiten $n$-exact sequences.
Zhou and Zhu have shown that if $\mathscr {C}$ is an $(n+2)$-angulated category and $\mathscr {X}$ is a cluster tilting subcategory of $\mathscr{C}$, then the quotient category $\mathscr {C}/\mathscr {X}$ is an $n$-abelian category. We show that if $\mathscr {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathscr {C}/\mathscr {X}$ has Auslander-Reiten $n$-exact sequences.
DOI : 10.21136/CMJ.2024.0545-23
Classification : 16G70, 18E10, 18G80
Keywords: $(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence
@article{10_21136_CMJ_2024_0545_23,
     author = {Li, Jiangsha and He, Jing},
     title = {Higher-dimensional {Auslander-Reiten} sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {771--786},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0545-23},
     mrnumber = {4804959},
     zbl = {07953677},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0545-23/}
}
TY  - JOUR
AU  - Li, Jiangsha
AU  - He, Jing
TI  - Higher-dimensional Auslander-Reiten sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 771
EP  - 786
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0545-23/
DO  - 10.21136/CMJ.2024.0545-23
LA  - en
ID  - 10_21136_CMJ_2024_0545_23
ER  - 
%0 Journal Article
%A Li, Jiangsha
%A He, Jing
%T Higher-dimensional Auslander-Reiten sequences
%J Czechoslovak Mathematical Journal
%D 2024
%P 771-786
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0545-23/
%R 10.21136/CMJ.2024.0545-23
%G en
%F 10_21136_CMJ_2024_0545_23
Li, Jiangsha; He, Jing. Higher-dimensional Auslander-Reiten sequences. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 771-786. doi: 10.21136/CMJ.2024.0545-23

[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III. Almost split sequences. Commun. Algebra 3 (1975), 239-294. | DOI | MR | JFM

[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. | DOI | MR | JFM

[4] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[5] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning. J. Pure Appl. Algebra 223 (2019), 3554-3580. | DOI | MR | JFM

[6] Fedele, F.: $d$-Auslander-Reiten sequences in subcategories. Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 342-373. | DOI | MR | JFM

[7] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM

[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). | DOI | MR | JFM

[9] He, J., Zhang, J. Hu. D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories. Ark. Mat. 60 (2022), 365-385. | DOI | MR | JFM

[10] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. | DOI | MR | JFM

[11] Iyama, O., Yoshino, Y.: Mutations in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | JFM

[12] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. | DOI | MR | JFM

[13] Jiao, P.: The generalized Auslander-Reiten duality on an exact category. J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. | DOI | MR | JFM

[14] rgensen, P. Jø: Auslander-Reiten theory over topological spaces. Comment. Math. Helv. 79 (2004), 160-182. | DOI | MR | JFM

[15] rgensen, P. Jø: Auslander-Reiten triangles in subcategories. J. $K$-Theory 3 (2009), 583-601. | DOI | MR | JFM

[16] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs. Czech. Math. J. 65 (2015), 953-968. | DOI | MR | JFM

[17] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. | DOI | MR | JFM

[18] Liu, S., Niu, H.: Almost split sequences in tri-exact categories. J. Pure Appl. Algebra 226 (2022), Article ID 107092, 31 pages. | DOI | MR | JFM

[19] Oppermann, S., Thomas, H.: Higher-dimensional cluster combinatorics and representation theory. J. Eur. Math. Soc. (JEMS) 14 (2012), 1679-1737. | DOI | MR | JFM

[20] Shah, A.: Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories. J. Pure Appl. Algebra 224 (2020), 98-124. | DOI | MR | JFM

[21] Zhou, P.: On the existence of Auslander-Reiten $(d+2)$-angles in $(d+2)$-angulated categories. Taiwanese. J. Math. 25 (2021), 233-249. | DOI | MR | JFM

[22] Zhou, P.: Higher-dimensional Auslander-Reiten theory on $(d+2)$-angulated categories. Glasg. Math. J. 64 (2022), 527-547. | DOI | MR | JFM

[23] Zhou, P., Zhu, B.: $n$-abelian quotient categories. J. Algebra 527 (2019), 264-279. | DOI | MR | JFM

Cité par Sources :