More on the strongly 1-absorbing primary ideals of commutative rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 115-126
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative ring with identity. We study the concept of strongly \hbox {1-absorbing} primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt {0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly \hbox {1-absorbing} primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
Let $R$ be a commutative ring with identity. We study the concept of strongly \hbox {1-absorbing} primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt {0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly \hbox {1-absorbing} primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
DOI : 10.21136/CMJ.2024.0525-22
Classification : 13A15, 13C05
Keywords: strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
@article{10_21136_CMJ_2024_0525_22,
     author = {Yassine, Ali and Nikmehr, Mohammad Javad and Nikandish, Reza},
     title = {More on the strongly 1-absorbing primary ideals of commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {115--126},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0525-22},
     mrnumber = {4717825},
     zbl = {07893370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/}
}
TY  - JOUR
AU  - Yassine, Ali
AU  - Nikmehr, Mohammad Javad
AU  - Nikandish, Reza
TI  - More on the strongly 1-absorbing primary ideals of commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 115
EP  - 126
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/
DO  - 10.21136/CMJ.2024.0525-22
LA  - en
ID  - 10_21136_CMJ_2024_0525_22
ER  - 
%0 Journal Article
%A Yassine, Ali
%A Nikmehr, Mohammad Javad
%A Nikandish, Reza
%T More on the strongly 1-absorbing primary ideals of commutative rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 115-126
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/
%R 10.21136/CMJ.2024.0525-22
%G en
%F 10_21136_CMJ_2024_0525_22
Yassine, Ali; Nikmehr, Mohammad Javad; Nikandish, Reza. More on the strongly 1-absorbing primary ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 115-126. doi: 10.21136/CMJ.2024.0525-22

[1] Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A.: On strongly 1-absorbing primary ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 1205-1213. | DOI | MR | JFM

[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. | DOI | MR | JFM

[3] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. | DOI | MR | JFM

[4] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173. | DOI | MR | JFM

[5] Badawi, A., Yetkin, E.: On 1-absorbing primary ideals of commutative rings. J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. | DOI | MR | JFM

[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. | DOI | MR | JFM

[7] R. W. Gilmer, Jr.: Rings in which semi-primary ideals are primary. Pac. J. Math. 12 (1962), 1273-1276. | DOI | MR | JFM

[8] R. W. Gilmer, Jr.: Extension of results concerning rings in which semi-primary ideals are primary. Duke Math. J. 31 (1964), 73-78. | DOI | MR | JFM

[9] R. W. Gilmer, Jr., J. L. Mott: Multiplication rings as rings in which ideals with prime radical are primary. Trans. Am. Math. Soc. 114 (1965), 40-52. | DOI | MR | JFM

[10] Krull, W.: Idealtheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. | DOI | MR | JFM

[11] Lam, T. Y.: Exercises in Classical Ring Theory. Problem Books in Mathematics. Springer, New York (1995). | DOI | MR | JFM

[12] Leerawat, U., Somsup, C.: Semicommutative involution rings. J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. | DOI | MR | JFM

[13] McCoy, N. H.: Rings and Ideals. The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). | DOI | MR | JFM

[14] Nikandish, R., Nikmehr, M. J., Yassine, A.: More on the 2-prime ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 117-126. | DOI | MR | JFM

[15] Sharp, R. Y.: Steps in Commutative Algebra. London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). | DOI | MR | JFM

[16] Tamekkante, M., Bouba, E. M.: $(2,n)$-ideals of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. | DOI | MR | JFM

[17] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. | DOI | MR | JFM

[18] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. | DOI | MR | JFM

Cité par Sources :