Keywords: strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
@article{10_21136_CMJ_2024_0525_22,
author = {Yassine, Ali and Nikmehr, Mohammad Javad and Nikandish, Reza},
title = {More on the strongly 1-absorbing primary ideals of commutative rings},
journal = {Czechoslovak Mathematical Journal},
pages = {115--126},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0525-22},
mrnumber = {4717825},
zbl = {07893370},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/}
}
TY - JOUR AU - Yassine, Ali AU - Nikmehr, Mohammad Javad AU - Nikandish, Reza TI - More on the strongly 1-absorbing primary ideals of commutative rings JO - Czechoslovak Mathematical Journal PY - 2024 SP - 115 EP - 126 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/ DO - 10.21136/CMJ.2024.0525-22 LA - en ID - 10_21136_CMJ_2024_0525_22 ER -
%0 Journal Article %A Yassine, Ali %A Nikmehr, Mohammad Javad %A Nikandish, Reza %T More on the strongly 1-absorbing primary ideals of commutative rings %J Czechoslovak Mathematical Journal %D 2024 %P 115-126 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/ %R 10.21136/CMJ.2024.0525-22 %G en %F 10_21136_CMJ_2024_0525_22
Yassine, Ali; Nikmehr, Mohammad Javad; Nikandish, Reza. More on the strongly 1-absorbing primary ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 115-126. doi: 10.21136/CMJ.2024.0525-22
[1] Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A.: On strongly 1-absorbing primary ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 1205-1213. | DOI | MR | JFM
[2] Anderson, D. D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56. | DOI | MR | JFM
[3] Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75 (2007), 417-429. | DOI | MR | JFM
[4] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173. | DOI | MR | JFM
[5] Badawi, A., Yetkin, E.: On 1-absorbing primary ideals of commutative rings. J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. | DOI | MR | JFM
[6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications. J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. | DOI | MR | JFM
[7] R. W. Gilmer, Jr.: Rings in which semi-primary ideals are primary. Pac. J. Math. 12 (1962), 1273-1276. | DOI | MR | JFM
[8] R. W. Gilmer, Jr.: Extension of results concerning rings in which semi-primary ideals are primary. Duke Math. J. 31 (1964), 73-78. | DOI | MR | JFM
[9] R. W. Gilmer, Jr., J. L. Mott: Multiplication rings as rings in which ideals with prime radical are primary. Trans. Am. Math. Soc. 114 (1965), 40-52. | DOI | MR | JFM
[10] Krull, W.: Idealtheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. | DOI | MR | JFM
[11] Lam, T. Y.: Exercises in Classical Ring Theory. Problem Books in Mathematics. Springer, New York (1995). | DOI | MR | JFM
[12] Leerawat, U., Somsup, C.: Semicommutative involution rings. J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. | DOI | MR | JFM
[13] McCoy, N. H.: Rings and Ideals. The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). | DOI | MR | JFM
[14] Nikandish, R., Nikmehr, M. J., Yassine, A.: More on the 2-prime ideals of commutative rings. Bull. Korean Math. Soc. 57 (2020), 117-126. | DOI | MR | JFM
[15] Sharp, R. Y.: Steps in Commutative Algebra. London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). | DOI | MR | JFM
[16] Tamekkante, M., Bouba, E. M.: $(2,n)$-ideals of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. | DOI | MR | JFM
[17] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings. Filomat 31 (2017), 2933-2941. | DOI | MR | JFM
[18] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings. J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. | DOI | MR | JFM
Cité par Sources :