More on the strongly 1-absorbing primary ideals of commutative rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 115-126.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with identity. We study the concept of strongly \hbox {1-absorbing} primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt {0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly \hbox {1-absorbing} primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results.
DOI : 10.21136/CMJ.2024.0525-22
Classification : 13A15, 13C05
Keywords: strongly 1-absorbing primary ideal; $n$-ideal; primary ideal; semi-primary ideal
@article{10_21136_CMJ_2024_0525_22,
     author = {Yassine, Ali and Nikmehr, Mohammad Javad and Nikandish, Reza},
     title = {More on the strongly 1-absorbing primary ideals of commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {115--126},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2024.0525-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/}
}
TY  - JOUR
AU  - Yassine, Ali
AU  - Nikmehr, Mohammad Javad
AU  - Nikandish, Reza
TI  - More on the strongly 1-absorbing primary ideals of commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 115
EP  - 126
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/
DO  - 10.21136/CMJ.2024.0525-22
LA  - en
ID  - 10_21136_CMJ_2024_0525_22
ER  - 
%0 Journal Article
%A Yassine, Ali
%A Nikmehr, Mohammad Javad
%A Nikandish, Reza
%T More on the strongly 1-absorbing primary ideals of commutative rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 115-126
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/
%R 10.21136/CMJ.2024.0525-22
%G en
%F 10_21136_CMJ_2024_0525_22
Yassine, Ali; Nikmehr, Mohammad Javad; Nikandish, Reza. More on the strongly 1-absorbing primary ideals of commutative rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 115-126. doi : 10.21136/CMJ.2024.0525-22. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0525-22/

Cité par Sources :