$b$-generalized skew derivations acting on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 575-597
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be any noncommutative prime ring of ${\rm char}(R)\neq 2,3$, $L$ a noncentral Lie ideal of $R$ and $F$, $G$ two nonzero $b$-generalized skew derivations of $R$. Suppose that $$[F(u),u]G(u)=0$$ for all $u\in L$. Then at least one of the following conclusions holds: \item {(1)} $F(x)=\lambda x$ for all $x\in R$ and for some $\lambda \in C$, where $C$ is the extended centroid of $R$; \item {(2)} $R\subseteq M_2(K)$, the algebra of $2\times 2$ matrices over a field $K$.
Let $R$ be any noncommutative prime ring of ${\rm char}(R)\neq 2,3$, $L$ a noncentral Lie ideal of $R$ and $F$, $G$ two nonzero $b$-generalized skew derivations of $R$. Suppose that $$[F(u),u]G(u)=0$$ for all $u\in L$. Then at least one of the following conclusions holds: \item {(1)} $F(x)=\lambda x$ for all $x\in R$ and for some $\lambda \in C$, where $C$ is the extended centroid of $R$; \item {(2)} $R\subseteq M_2(K)$, the algebra of $2\times 2$ matrices over a field $K$.
DOI : 10.21136/CMJ.2024.0507-23
Classification : 16N60, 16W25
Keywords: derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring
@article{10_21136_CMJ_2024_0507_23,
     author = {Dhara, Basudeb and Singh, Kalyan},
     title = {$b$-generalized skew derivations acting on {Lie} ideals in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {575--597},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0507-23},
     mrnumber = {4764541},
     zbl = {07893400},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/}
}
TY  - JOUR
AU  - Dhara, Basudeb
AU  - Singh, Kalyan
TI  - $b$-generalized skew derivations acting on Lie ideals in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 575
EP  - 597
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/
DO  - 10.21136/CMJ.2024.0507-23
LA  - en
ID  - 10_21136_CMJ_2024_0507_23
ER  - 
%0 Journal Article
%A Dhara, Basudeb
%A Singh, Kalyan
%T $b$-generalized skew derivations acting on Lie ideals in prime rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 575-597
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/
%R 10.21136/CMJ.2024.0507-23
%G en
%F 10_21136_CMJ_2024_0507_23
Dhara, Basudeb; Singh, Kalyan. $b$-generalized skew derivations acting on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 575-597. doi: 10.21136/CMJ.2024.0507-23

[1] Albaş, E., Argaç, N., Filippis, V. De: Posner's second theorem and some related annihilating conditions on Lie ideals. Filomat 32 (2018), 1285-1301. | DOI | MR | JFM

[2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. | DOI | MR | JFM

[3] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | JFM

[4] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation. J. Algebra 288 (2005), 59-77. | DOI | MR | JFM

[5] Dhara, B., Argac, N., Albas, E.: Vanishing derivations and co-centralizing generalized derivations on multilinear polynomials in prime rings. Commun. Algebra 44 (2016), 1905-1923. | DOI | MR | JFM

[6] Filippis, V. De: Annihilators and power values of generalized skew derivations on Lie ideals. Can. Math. Bull. 59 (2016), 258-270. | DOI | MR | JFM

[7] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra 40 (2012), 1918-1932. | DOI | MR | JFM

[8] Filippis, V. De, Scudo, G., El-sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453-468. | DOI | MR | JFM

[9] Filippis, V. De, Wei, F.: An Engel condition with $X$-generalized skew derivations on Lie ideals. Commun. Algebra 46 (2018), 5433-5446. | DOI | MR | JFM

[10] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR | JFM

[11] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. | DOI | MR | JFM

[12] Jacobson, N.: Structure of Rings. Colloquium Publications 37. AMS, Providence (1964). | DOI | MR | JFM

[13] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | JFM

[14] Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. | DOI | MR | JFM

[15] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. | MR | JFM

[16] Liu, C.-K.: An Engel condition with $b$-generalized derivations. Linear Multilinear Algebra 65 (2017), 300-312. | DOI | MR | JFM

[17] III, W. S. Martindale: Prime rings satisfying generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | JFM

[18] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR | JFM

[19] Vukman, J.: On derivations in prime rings and Banach algebras. Proc. Am. Math. Soc. 116 (1992), 877-884. | DOI | MR | JFM

[20] Wong, T.-L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | JFM

Cité par Sources :