Keywords: derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring
@article{10_21136_CMJ_2024_0507_23,
author = {Dhara, Basudeb and Singh, Kalyan},
title = {$b$-generalized skew derivations acting on {Lie} ideals in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {575--597},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0507-23},
mrnumber = {4764541},
zbl = {07893400},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/}
}
TY - JOUR AU - Dhara, Basudeb AU - Singh, Kalyan TI - $b$-generalized skew derivations acting on Lie ideals in prime rings JO - Czechoslovak Mathematical Journal PY - 2024 SP - 575 EP - 597 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/ DO - 10.21136/CMJ.2024.0507-23 LA - en ID - 10_21136_CMJ_2024_0507_23 ER -
%0 Journal Article %A Dhara, Basudeb %A Singh, Kalyan %T $b$-generalized skew derivations acting on Lie ideals in prime rings %J Czechoslovak Mathematical Journal %D 2024 %P 575-597 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/ %R 10.21136/CMJ.2024.0507-23 %G en %F 10_21136_CMJ_2024_0507_23
Dhara, Basudeb; Singh, Kalyan. $b$-generalized skew derivations acting on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 575-597. doi: 10.21136/CMJ.2024.0507-23
[1] Albaş, E., Argaç, N., Filippis, V. De: Posner's second theorem and some related annihilating conditions on Lie ideals. Filomat 32 (2018), 1285-1301. | DOI | MR | JFM
[2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. | DOI | MR | JFM
[3] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | JFM
[4] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation. J. Algebra 288 (2005), 59-77. | DOI | MR | JFM
[5] Dhara, B., Argac, N., Albas, E.: Vanishing derivations and co-centralizing generalized derivations on multilinear polynomials in prime rings. Commun. Algebra 44 (2016), 1905-1923. | DOI | MR | JFM
[6] Filippis, V. De: Annihilators and power values of generalized skew derivations on Lie ideals. Can. Math. Bull. 59 (2016), 258-270. | DOI | MR | JFM
[7] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Commun. Algebra 40 (2012), 1918-1932. | DOI | MR | JFM
[8] Filippis, V. De, Scudo, G., El-sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453-468. | DOI | MR | JFM
[9] Filippis, V. De, Wei, F.: An Engel condition with $X$-generalized skew derivations on Lie ideals. Commun. Algebra 46 (2018), 5433-5446. | DOI | MR | JFM
[10] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR | JFM
[11] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. | DOI | MR | JFM
[12] Jacobson, N.: Structure of Rings. Colloquium Publications 37. AMS, Providence (1964). | DOI | MR | JFM
[13] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | JFM
[14] Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118 (1993), 731-734. | DOI | MR | JFM
[15] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. | MR | JFM
[16] Liu, C.-K.: An Engel condition with $b$-generalized derivations. Linear Multilinear Algebra 65 (2017), 300-312. | DOI | MR | JFM
[17] III, W. S. Martindale: Prime rings satisfying generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR | JFM
[18] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. | DOI | MR | JFM
[19] Vukman, J.: On derivations in prime rings and Banach algebras. Proc. Am. Math. Soc. 116 (1992), 877-884. | DOI | MR | JFM
[20] Wong, T.-L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | JFM
Cité par Sources :