$b$-generalized skew derivations acting on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 575-597
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be any noncommutative prime ring of ${\rm char}(R)\neq 2,3$, $L$ a noncentral Lie ideal of $R$ and $F$, $G$ two nonzero $b$-generalized skew derivations of $R$. Suppose that $$[F(u),u]G(u)=0$$ for all $u\in L$. Then at least one of the following conclusions holds: \item {(1)} $F(x)=\lambda x$ for all $x\in R$ and for some $\lambda \in C$, where $C$ is the extended centroid of $R$; \item {(2)} $R\subseteq M_2(K)$, the algebra of $2\times 2$ matrices over a field $K$.
Let $R$ be any noncommutative prime ring of ${\rm char}(R)\neq 2,3$, $L$ a noncentral Lie ideal of $R$ and $F$, $G$ two nonzero $b$-generalized skew derivations of $R$. Suppose that $$[F(u),u]G(u)=0$$ for all $u\in L$. Then at least one of the following conclusions holds: \item {(1)} $F(x)=\lambda x$ for all $x\in R$ and for some $\lambda \in C$, where $C$ is the extended centroid of $R$; \item {(2)} $R\subseteq M_2(K)$, the algebra of $2\times 2$ matrices over a field $K$.
DOI :
10.21136/CMJ.2024.0507-23
Classification :
16N60, 16W25
Keywords: derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring
Keywords: derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring
@article{10_21136_CMJ_2024_0507_23,
author = {Dhara, Basudeb and Singh, Kalyan},
title = {$b$-generalized skew derivations acting on {Lie} ideals in prime rings},
journal = {Czechoslovak Mathematical Journal},
pages = {575--597},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0507-23},
mrnumber = {4764541},
zbl = {07893400},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/}
}
TY - JOUR AU - Dhara, Basudeb AU - Singh, Kalyan TI - $b$-generalized skew derivations acting on Lie ideals in prime rings JO - Czechoslovak Mathematical Journal PY - 2024 SP - 575 EP - 597 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/ DO - 10.21136/CMJ.2024.0507-23 LA - en ID - 10_21136_CMJ_2024_0507_23 ER -
%0 Journal Article %A Dhara, Basudeb %A Singh, Kalyan %T $b$-generalized skew derivations acting on Lie ideals in prime rings %J Czechoslovak Mathematical Journal %D 2024 %P 575-597 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0507-23/ %R 10.21136/CMJ.2024.0507-23 %G en %F 10_21136_CMJ_2024_0507_23
Dhara, Basudeb; Singh, Kalyan. $b$-generalized skew derivations acting on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 575-597. doi: 10.21136/CMJ.2024.0507-23
Cité par Sources :