Keywords: Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
@article{10_21136_CMJ_2024_0468_23,
author = {Gil', Michael},
title = {Perturbations of real parts of eigenvalues of bounded linear operators in a {Hilbert} space},
journal = {Czechoslovak Mathematical Journal},
pages = {567--573},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0468-23},
mrnumber = {4764540},
zbl = {07893399},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/}
}
TY - JOUR AU - Gil', Michael TI - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space JO - Czechoslovak Mathematical Journal PY - 2024 SP - 567 EP - 573 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/ DO - 10.21136/CMJ.2024.0468-23 LA - en ID - 10_21136_CMJ_2024_0468_23 ER -
%0 Journal Article %A Gil', Michael %T Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space %J Czechoslovak Mathematical Journal %D 2024 %P 567-573 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/ %R 10.21136/CMJ.2024.0468-23 %G en %F 10_21136_CMJ_2024_0468_23
Gil', Michael. Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573. doi: 10.21136/CMJ.2024.0468-23
[1] Abdelmoumen, B., Jeribi, A., Mnif, M.: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation. Extr. Math. 26 (2011), 61-73. | MR | JFM
[2] Aiena, P., Triolo, S.: Some perturbation results through localized SVEP. Acta Sci. Math. 82 (2016), 205-219. | DOI | MR | JFM
[3] Bhatia, R., Davis, C.: Perturbation of extended enumerations of eigenvalues. Acta Sci. Math. 65 (1999), 277-286. | MR | JFM
[4] Bhatia, R., Elsner, L.: The Hoffman-Wielandt inequality in infinite dimensions. Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. | DOI | MR | JFM
[5] Chaker, W., Jeribi, A., Krichen, B.: Demicompact linear operators, essential spectrum and some perturbation results. Math. Nachr. 288 (2015), 1476-1486. | DOI | MR | JFM
[6] Gil', M. I.: Lower bounds for eigenvalues of Schatten-von Neumann operators. JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. | MR | JFM
[7] Gil', M. I.: Sums of real parts of eigenvalues of perturbed matrices. J. Math. Inequal. 4 (2010), 517-522. | DOI | MR | JFM
[8] Gil', M. I.: Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators. J. Funct. Anal. 267 (2014), 3500-3506. | DOI | MR | JFM
[9] Gil', M. I.: A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators. Funct. Anal. Approx. Comput. 7 (2015), 35-38. | MR | JFM
[10] Gil', M. I.: Inequalities for eigenvalues of compact operators in a Hilbert space. Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. | DOI | MR | JFM
[11] Gil', M. I.: Operator Functions and Operator Equations. World Scientific, Hackensack (2018). | DOI | MR | JFM
[12] Gil', M. I.: Norm estimates for resolvents of linear operators in a Banach space and spectral variations. Adv. Oper. Theory 4 (2019), 113-139. | DOI | MR | JFM
[13] Gil', M. I.: On matching distance between eigenvalues of unbounded operators. Constr. Math. Anal. 5 (2022), 46-53. | DOI | MR | JFM
[14] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). | DOI | MR | JFM
[15] Gohberg, I. C., Krein, M. G.: Theory and Applications of Volterra Operators in a Hilbert Space. Translations of Mathematical Monographs 24. AMS, Providence (1970). | DOI | MR | JFM
[16] Jeribi, A.: Perturbation Theory for Linear Operators: Denseness and Bases with Applications. Springer, Singapore (2021). | DOI | MR | JFM
[17] Kahan, W.: Spectra of nearly Hermitian matrices. Proc. Am. Math. Soc. 48 (1975), 11-17. | DOI | MR | JFM
[18] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). | DOI | MR | JFM
[19] Kato, T.: Variation of discrete spectra. Commun. Math. Phys. 111 (1987), 501-504. | DOI | MR | JFM
[20] Killip, R.: Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum. Int. Math. Res. Not. 2002 (2002), 2029-2061. | DOI | MR | JFM
[21] Ma, R., Wang, H., Elsanosi, M.: Spectrum of a linear fourth-order differential operator and its applications. Math. Nachr. 286 (2013), 1805-1819. | DOI | MR | JFM
[22] Rojo, O.: Inequalities involving the mean and the standard deviation of nonnegative real numbers. J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. | DOI | MR | JFM
[23] Sahari, M. L., Taha, A. K., Randriamihamison, L.: A note on the spectrum of diagonal perturbation of weighted shift operator. Matematiche 74 (2019), 35-47. | DOI | MR | JFM
Cité par Sources :