Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
DOI :
10.21136/CMJ.2024.0468-23
Classification :
47A10, 47A55, 47B10
Keywords: Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
Keywords: Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
@article{10_21136_CMJ_2024_0468_23,
author = {Gil', Michael},
title = {Perturbations of real parts of eigenvalues of bounded linear operators in a {Hilbert} space},
journal = {Czechoslovak Mathematical Journal},
pages = {567--573},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0468-23},
mrnumber = {4764540},
zbl = {07893399},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/}
}
TY - JOUR AU - Gil', Michael TI - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space JO - Czechoslovak Mathematical Journal PY - 2024 SP - 567 EP - 573 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/ DO - 10.21136/CMJ.2024.0468-23 LA - en ID - 10_21136_CMJ_2024_0468_23 ER -
%0 Journal Article %A Gil', Michael %T Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space %J Czechoslovak Mathematical Journal %D 2024 %P 567-573 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/ %R 10.21136/CMJ.2024.0468-23 %G en %F 10_21136_CMJ_2024_0468_23
Gil', Michael. Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573. doi: 10.21136/CMJ.2024.0468-23
Cité par Sources :