Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
DOI : 10.21136/CMJ.2024.0468-23
Classification : 47A10, 47A55, 47B10
Keywords: Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
@article{10_21136_CMJ_2024_0468_23,
     author = {Gil', Michael},
     title = {Perturbations of real parts of eigenvalues of bounded linear operators in a {Hilbert} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {567--573},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0468-23},
     mrnumber = {4764540},
     zbl = {07893399},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/}
}
TY  - JOUR
AU  - Gil', Michael
TI  - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 567
EP  - 573
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/
DO  - 10.21136/CMJ.2024.0468-23
LA  - en
ID  - 10_21136_CMJ_2024_0468_23
ER  - 
%0 Journal Article
%A Gil', Michael
%T Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
%J Czechoslovak Mathematical Journal
%D 2024
%P 567-573
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/
%R 10.21136/CMJ.2024.0468-23
%G en
%F 10_21136_CMJ_2024_0468_23
Gil', Michael. Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573. doi: 10.21136/CMJ.2024.0468-23

Cité par Sources :