Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$ $(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$ $(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the ``extended'' eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
DOI : 10.21136/CMJ.2024.0468-23
Classification : 47A10, 47A55, 47B10
Keywords: Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
@article{10_21136_CMJ_2024_0468_23,
     author = {Gil', Michael},
     title = {Perturbations of real parts of eigenvalues of bounded linear operators in a {Hilbert} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {567--573},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0468-23},
     mrnumber = {4764540},
     zbl = {07893399},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/}
}
TY  - JOUR
AU  - Gil', Michael
TI  - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 567
EP  - 573
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/
DO  - 10.21136/CMJ.2024.0468-23
LA  - en
ID  - 10_21136_CMJ_2024_0468_23
ER  - 
%0 Journal Article
%A Gil', Michael
%T Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
%J Czechoslovak Mathematical Journal
%D 2024
%P 567-573
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0468-23/
%R 10.21136/CMJ.2024.0468-23
%G en
%F 10_21136_CMJ_2024_0468_23
Gil', Michael. Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 567-573. doi: 10.21136/CMJ.2024.0468-23

[1] Abdelmoumen, B., Jeribi, A., Mnif, M.: Invariance of the Schechter essential spectrum under polynomially compact operator perturbation. Extr. Math. 26 (2011), 61-73. | MR | JFM

[2] Aiena, P., Triolo, S.: Some perturbation results through localized SVEP. Acta Sci. Math. 82 (2016), 205-219. | DOI | MR | JFM

[3] Bhatia, R., Davis, C.: Perturbation of extended enumerations of eigenvalues. Acta Sci. Math. 65 (1999), 277-286. | MR | JFM

[4] Bhatia, R., Elsner, L.: The Hoffman-Wielandt inequality in infinite dimensions. Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. | DOI | MR | JFM

[5] Chaker, W., Jeribi, A., Krichen, B.: Demicompact linear operators, essential spectrum and some perturbation results. Math. Nachr. 288 (2015), 1476-1486. | DOI | MR | JFM

[6] Gil', M. I.: Lower bounds for eigenvalues of Schatten-von Neumann operators. JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. | MR | JFM

[7] Gil', M. I.: Sums of real parts of eigenvalues of perturbed matrices. J. Math. Inequal. 4 (2010), 517-522. | DOI | MR | JFM

[8] Gil', M. I.: Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators. J. Funct. Anal. 267 (2014), 3500-3506. | DOI | MR | JFM

[9] Gil', M. I.: A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators. Funct. Anal. Approx. Comput. 7 (2015), 35-38. | MR | JFM

[10] Gil', M. I.: Inequalities for eigenvalues of compact operators in a Hilbert space. Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. | DOI | MR | JFM

[11] Gil', M. I.: Operator Functions and Operator Equations. World Scientific, Hackensack (2018). | DOI | MR | JFM

[12] Gil', M. I.: Norm estimates for resolvents of linear operators in a Banach space and spectral variations. Adv. Oper. Theory 4 (2019), 113-139. | DOI | MR | JFM

[13] Gil', M. I.: On matching distance between eigenvalues of unbounded operators. Constr. Math. Anal. 5 (2022), 46-53. | DOI | MR | JFM

[14] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). | DOI | MR | JFM

[15] Gohberg, I. C., Krein, M. G.: Theory and Applications of Volterra Operators in a Hilbert Space. Translations of Mathematical Monographs 24. AMS, Providence (1970). | DOI | MR | JFM

[16] Jeribi, A.: Perturbation Theory for Linear Operators: Denseness and Bases with Applications. Springer, Singapore (2021). | DOI | MR | JFM

[17] Kahan, W.: Spectra of nearly Hermitian matrices. Proc. Am. Math. Soc. 48 (1975), 11-17. | DOI | MR | JFM

[18] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). | DOI | MR | JFM

[19] Kato, T.: Variation of discrete spectra. Commun. Math. Phys. 111 (1987), 501-504. | DOI | MR | JFM

[20] Killip, R.: Perturbations of one-dimensional Schrödinger operators preserving the absolutely continuous spectrum. Int. Math. Res. Not. 2002 (2002), 2029-2061. | DOI | MR | JFM

[21] Ma, R., Wang, H., Elsanosi, M.: Spectrum of a linear fourth-order differential operator and its applications. Math. Nachr. 286 (2013), 1805-1819. | DOI | MR | JFM

[22] Rojo, O.: Inequalities involving the mean and the standard deviation of nonnegative real numbers. J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. | DOI | MR | JFM

[23] Sahari, M. L., Taha, A. K., Randriamihamison, L.: A note on the spectrum of diagonal perturbation of weighted shift operator. Matematiche 74 (2019), 35-47. | DOI | MR | JFM

Cité par Sources :