Some results on Sylow numbers of finite groups
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1083-1095
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)39/4$ and ${\rm asn}(G)\neq 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.
We study the group structure in terms of the number of Sylow $p$-subgroups, which is denoted by $n_p(G)$. The first part is on the group structure of finite group $G$ such that $n_p(G)=n_p(G/N)$, where $N$ is a normal subgroup of $G$. The second part is on the average Sylow number ${\rm asn}(G)$ and we prove that if $G$ is a finite nonsolvable group with ${\rm asn}(G)39/4$ and ${\rm asn}(G)\neq 29/4$, then $G/F(G)\cong A_5$, where $F(G)$ is the Fitting subgroup of $G$. In the third part, we study the nonsolvable group with small sum of Sylow numbers.
DOI : 10.21136/CMJ.2024.0466-23
Classification : 20D05, 20D20
Keywords: Sylow number; nonsolvable group
@article{10_21136_CMJ_2024_0466_23,
     author = {Liu, Yang and Zhang, Jinjie},
     title = {Some results on {Sylow} numbers of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1083--1095},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0466-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0466-23/}
}
TY  - JOUR
AU  - Liu, Yang
AU  - Zhang, Jinjie
TI  - Some results on Sylow numbers of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1083
EP  - 1095
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0466-23/
DO  - 10.21136/CMJ.2024.0466-23
LA  - en
ID  - 10_21136_CMJ_2024_0466_23
ER  - 
%0 Journal Article
%A Liu, Yang
%A Zhang, Jinjie
%T Some results on Sylow numbers of finite groups
%J Czechoslovak Mathematical Journal
%D 2024
%P 1083-1095
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0466-23/
%R 10.21136/CMJ.2024.0466-23
%G en
%F 10_21136_CMJ_2024_0466_23
Liu, Yang; Zhang, Jinjie. Some results on Sylow numbers of finite groups. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1083-1095. doi: 10.21136/CMJ.2024.0466-23

[1] Anabanti, C. S., Moretó, A., Zarrin, M.: Influence of the number of Sylow subgroups on solvability of finite groups. C. R. Math., Acad. Sci. Paris 358 (2020), 1227-1230. | DOI | MR | JFM

[2] Asboei, A. K., Amiri, S. S. S.: On the average number of Sylow subgroups in finite groups. Czech. Math. J. 72 (2022), 747-750. | DOI | MR | JFM

[3] Asboei, A. K., Darafsheh, M. R.: On sums of Sylow numbers of finite groups. Bull. Iran. Math. Soc. 44 (2018), 1509-1518. | DOI | MR | JFM

[4] Chigira, N.: Number of Sylow subgroups and $p$-nilpotence of finite groups. J. Algebra 201 (1998), 71-85. | DOI | MR | JFM

[5] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford University Press, Oxford (1985). | MR | JFM

[6] M. Hall, Jr.: On the number of Sylow subgroups of a finite group. J. Algebra 7 (1967), 363-371. | DOI | MR | JFM

[7] Hall, P.: A note on soluble groups. J. Lond. Math. Soc. 3 (1928), 98-105 \99999JFM99999 54.0145.01. | DOI | MR

[8] Hurt, N. E.: Many Rational Points: Coding Theory and Algebraic Geometry. Mathematics and its Applications 564. Kluwer Academic, Dordrecht (2003). | DOI | MR | JFM

[9] Kondrat'ev, A. S.: Normalizers of the Sylow 2-subgroups in finite simple groups. Math. Notes 78 (2005), 338-346. | DOI | MR | JFM

[10] Lu, J., Meng, W., Moretó, A., Wu, K.: Notes on the average number of Sylow subgroups of finite groups. Czech. Math. J. 71 (2021), 1129-1132. | DOI | MR | JFM

[11] Moretó, A.: Groups with two Sylow numbers are the product of two nilpotent Hall subgroups. Arch. Math. 99 (2012), 301-304. | DOI | MR | JFM

[12] Moretó, A.: Sylow numbers and nilpotent Hall subgroups. J. Algebra 379 (2013), 80-84. | DOI | MR | JFM

[13] Moretó, A.: The average number of Sylow subgroups of a finite group. Math. Nachr. 287 (2014), 1183-1185. | DOI | MR | JFM

[14] Zhang, J.: Sylow numbers of finite groups. J. Algebra 176 (1995), 111-123. | DOI | MR | JFM

Cité par Sources :