Turán number of two vertex-disjoint copies of cliques
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 759-769
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Turán number of a given graph $H$, denoted by ${\rm ex}(n,H)$, is the maximum number of edges in an $H$-free graph on $n$ vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number $\text {ex}(n, K_p \cup K_q$) of a vertex-disjoint union of cliques $K_p$ and $K_q$ for all values of $n$.
The Turán number of a given graph $H$, denoted by ${\rm ex}(n,H)$, is the maximum number of edges in an $H$-free graph on $n$ vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number $\text {ex}(n, K_p \cup K_q$) of a vertex-disjoint union of cliques $K_p$ and $K_q$ for all values of $n$.
DOI :
10.21136/CMJ.2024.0461-23
Classification :
05C35, 05D05
Keywords: clique; Hajnal and Szemerédi theorem; Turán number; extremal graph
Keywords: clique; Hajnal and Szemerédi theorem; Turán number; extremal graph
@article{10_21136_CMJ_2024_0461_23,
author = {Hu, Caiyun},
title = {Tur\'an number of two vertex-disjoint copies of cliques},
journal = {Czechoslovak Mathematical Journal},
pages = {759--769},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0461-23},
mrnumber = {4804958},
zbl = {07953676},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0461-23/}
}
TY - JOUR AU - Hu, Caiyun TI - Turán number of two vertex-disjoint copies of cliques JO - Czechoslovak Mathematical Journal PY - 2024 SP - 759 EP - 769 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0461-23/ DO - 10.21136/CMJ.2024.0461-23 LA - en ID - 10_21136_CMJ_2024_0461_23 ER -
Hu, Caiyun. Turán number of two vertex-disjoint copies of cliques. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 759-769. doi: 10.21136/CMJ.2024.0461-23
Cité par Sources :