On the characterization of certain additive maps in prime $\ast $-rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
DOI :
10.21136/CMJ.2024.0460-23
Classification :
16N60, 16W10, 47B47
Keywords: prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
Keywords: prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
@article{10_21136_CMJ_2024_0460_23,
author = {Ashraf, Mohammad and Siddeeque, Mohammad Aslam and Shikeh, Abbas Hussain},
title = {On the characterization of certain additive maps in prime $\ast $-rings},
journal = {Czechoslovak Mathematical Journal},
pages = {549--565},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0460-23},
mrnumber = {4764539},
zbl = {07893398},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/}
}
TY - JOUR AU - Ashraf, Mohammad AU - Siddeeque, Mohammad Aslam AU - Shikeh, Abbas Hussain TI - On the characterization of certain additive maps in prime $\ast $-rings JO - Czechoslovak Mathematical Journal PY - 2024 SP - 549 EP - 565 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/ DO - 10.21136/CMJ.2024.0460-23 LA - en ID - 10_21136_CMJ_2024_0460_23 ER -
%0 Journal Article %A Ashraf, Mohammad %A Siddeeque, Mohammad Aslam %A Shikeh, Abbas Hussain %T On the characterization of certain additive maps in prime $\ast $-rings %J Czechoslovak Mathematical Journal %D 2024 %P 549-565 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/ %R 10.21136/CMJ.2024.0460-23 %G en %F 10_21136_CMJ_2024_0460_23
Ashraf, Mohammad; Siddeeque, Mohammad Aslam; Shikeh, Abbas Hussain. On the characterization of certain additive maps in prime $\ast $-rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565. doi: 10.21136/CMJ.2024.0460-23
Cité par Sources :