On the characterization of certain additive maps in prime $\ast $-rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
DOI : 10.21136/CMJ.2024.0460-23
Classification : 16N60, 16W10, 47B47
Keywords: prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
@article{10_21136_CMJ_2024_0460_23,
     author = {Ashraf, Mohammad and Siddeeque, Mohammad Aslam and Shikeh, Abbas Hussain},
     title = {On the characterization of certain additive maps in prime $\ast $-rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {549--565},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0460-23},
     mrnumber = {4764539},
     zbl = {07893398},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Siddeeque, Mohammad Aslam
AU  - Shikeh, Abbas Hussain
TI  - On the characterization of certain additive maps in prime $\ast $-rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 549
EP  - 565
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/
DO  - 10.21136/CMJ.2024.0460-23
LA  - en
ID  - 10_21136_CMJ_2024_0460_23
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Siddeeque, Mohammad Aslam
%A Shikeh, Abbas Hussain
%T On the characterization of certain additive maps in prime $\ast $-rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 549-565
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/
%R 10.21136/CMJ.2024.0460-23
%G en
%F 10_21136_CMJ_2024_0460_23
Ashraf, Mohammad; Siddeeque, Mohammad Aslam; Shikeh, Abbas Hussain. On the characterization of certain additive maps in prime $\ast $-rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565. doi: 10.21136/CMJ.2024.0460-23

[1] Abbasi, A., Abdioglu, C., Ali, S., Mozumder, M. R.: A characterization of Jordan left *-centralizers via skew Lie and Jordan products. Bull. Iran. Math. Soc. 48 (2022), 2765-2778. | DOI | MR | JFM

[2] Beidar, K. I., III, W. S. Martindale: On functional identities in prime rings with involution. J. Algebra 203 (1998), 491-532. | DOI | MR | JFM

[3] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196. Marcel Dekker, New York (1996). | MR | JFM

[4] Bennis, D., Dhara, B., Fahid, B.: More on the generalized $(m,n)$-Jordan derivations and centralizers on certain semiprime rings. Bull. Iran. Math. Soc. 47 (2021), 217-224. | DOI | MR | JFM

[5] Brešar, M.: Functional identities and rings of quotients. Algebr. Represent. Theory 19 (2016), 1437-1450. | DOI | MR | JFM

[6] Brešar, M., Chebotar, M. A., III, W. S. Martindale: Functional Identities. Frontiers in Mathematics. Birkhäuser, Basel (2007). | DOI | MR | JFM

[7] Fošner, A.: A note on generalized $(m,n)$-Jordan centralizers. Demonstr. Math. 46 (2013), 254-262. | DOI | MR | JFM

[8] Herstein, I. N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8 (1957), 1104-1110. | DOI | MR | JFM

[9] Herstein, I. N.: Topics in Ring Theory. University of Chicago Press, Chicago (1969). | MR | JFM

[10] Kosi-Ulbl, I., Vukman, J.: On $(m,n)$-Jordan centralizers of semiprime rings. Publ. Math. Debr. 89 (2016), 223-231. | DOI | MR | JFM

[11] Lanning, S.: The maximal symmetric ring of quotients. J. Algebra 179 (1996), 47-91. | DOI | MR | JFM

[12] Lee, T.-K., Lin, J.-H.: Jordan derivations of prime rings with characteristic two. Linear Algebra Appl. 462 (2014), 1-15. | DOI | MR | JFM

[13] Lee, T.-K., Lin, J.-H.: Jordan $\tau$-derivations of prime rings. Commun. Algebra 43 (2015), 5195-5204. | DOI | MR | JFM

[14] Lee, T.-K., Wong, T.-L.: Right centralizers of semiprime rings. Commun. Algebra 42 (2014), 2923-2927. | DOI | MR | JFM

[15] Lee, T.-K., Wong, T.-L., Zhou, Y.: The structure of Jordan *-derivations of prime rings. Linear Multilinear Algebra 63 (2015), 411-422. | DOI | MR | JFM

[16] Lee, T.-K., Zhou, Y.: Jordan *-derivations of prime rings. J. Algebra Appl. 13 (2014), Article ID 1350126, 9 pages. | DOI | MR | JFM

[17] Lin, J.-H.: Jordan $\tau$-derivations of prime GPI-rings. Taiwanese J. Math. 24 (2020), 1091-1105. | DOI | MR | JFM

[18] Qi, X., Zhang, Y.: $k$-skew Lie products on prime rings with involution. Commun. Algebra 46 (2018), 1001-1010. | DOI | MR | JFM

[19] Rowen, L.: Some results on the center of a ring with polynomial identity. Bull. Am. Math. Soc. 79 (1973), 219-223. | DOI | MR | JFM

[20] Šemrl, P.: Quadratic functionals and Jordan *-derivations. Stud. Math. 97 (1991), 157-165. | DOI | MR | JFM

[21] Šemrl, P.: Jordan *-derivations on standard operator algebras. Proc. Am. Math. Soc. 120 (1994), 515-518. | DOI | MR | JFM

[22] Siddeeque, M. A., Khan, N., Abdullah, A. A.: Weak Jordan *-derivations of prime rings. J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. | DOI | MR | JFM

[23] Siddeeque, M. A., Shikeh, A. H.: On the characterization of generalized $(m,n)$-Jordan *-derivations in prime rings. Georgian Math. J. 31 (2024), 139-148. | DOI | MR | JFM

[24] Siddeeque, M. A., Shikeh, A. H.: A note on certain additive maps in prime rings with involution. (to appear) in Beitr. Algebra Geom. | DOI | MR

[25] Vukman, J.: An identity related to centralizers in semiprime rings. Commentat. Math. Univ. Carol. 40 (1999), 447-456. | MR | JFM

[26] Vukman, J.: Centralizers on semiprime rings. Commentat. Math. Univ. Carol. 42 (2001), 237-245. | MR | JFM

[27] Vukman, J.: On $(m,n)$-Jordan centralizers in rings and algebras. Glas. Math., III. Ser. 45 (2010), 43-53. | DOI | MR | JFM

[28] Vukman, J., Fošner, M.: A characterization of two-sided centralizers on prime rings. Taiwanese J. Math. 11 (2007), 1431-1441. | DOI | MR | JFM

[29] Vukman, J., Kosi-Ulbl, I.: On centralizers of semiprime rings. Aequationes Math. 66 (2003), 277-283. | DOI | MR | JFM

[30] Zalar, B.: On centralizers of semiprime rings. Commentat. Math. Univ. Carol. 32 (1991), 609-614. | MR | JFM

Cité par Sources :