On the characterization of certain additive maps in prime $\ast $-rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
DOI : 10.21136/CMJ.2024.0460-23
Classification : 16N60, 16W10, 47B47
Keywords: prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
@article{10_21136_CMJ_2024_0460_23,
     author = {Ashraf, Mohammad and Siddeeque, Mohammad Aslam and Shikeh, Abbas Hussain},
     title = {On the characterization of certain additive maps in prime $\ast $-rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {549--565},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0460-23},
     mrnumber = {4764539},
     zbl = {07893398},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Siddeeque, Mohammad Aslam
AU  - Shikeh, Abbas Hussain
TI  - On the characterization of certain additive maps in prime $\ast $-rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 549
EP  - 565
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/
DO  - 10.21136/CMJ.2024.0460-23
LA  - en
ID  - 10_21136_CMJ_2024_0460_23
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Siddeeque, Mohammad Aslam
%A Shikeh, Abbas Hussain
%T On the characterization of certain additive maps in prime $\ast $-rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 549-565
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0460-23/
%R 10.21136/CMJ.2024.0460-23
%G en
%F 10_21136_CMJ_2024_0460_23
Ashraf, Mohammad; Siddeeque, Mohammad Aslam; Shikeh, Abbas Hussain. On the characterization of certain additive maps in prime $\ast $-rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 549-565. doi: 10.21136/CMJ.2024.0460-23

Cité par Sources :