On the least almost-prime in arithmetic progressions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
DOI : 10.21136/CMJ.2024.0459-23
Classification : 11N13, 11N35, 11N36
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
@article{10_21136_CMJ_2024_0459_23,
     author = {Wu, Liuying},
     title = {On the least almost-prime in arithmetic progressions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {535--548},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0459-23},
     mrnumber = {4764538},
     zbl = {07893397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/}
}
TY  - JOUR
AU  - Wu, Liuying
TI  - On the least almost-prime in arithmetic progressions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 535
EP  - 548
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/
DO  - 10.21136/CMJ.2024.0459-23
LA  - en
ID  - 10_21136_CMJ_2024_0459_23
ER  - 
%0 Journal Article
%A Wu, Liuying
%T On the least almost-prime in arithmetic progressions
%J Czechoslovak Mathematical Journal
%D 2024
%P 535-548
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/
%R 10.21136/CMJ.2024.0459-23
%G en
%F 10_21136_CMJ_2024_0459_23
Wu, Liuying. On the least almost-prime in arithmetic progressions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548. doi: 10.21136/CMJ.2024.0459-23

Cité par Sources :