On the least almost-prime in arithmetic progressions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
DOI : 10.21136/CMJ.2024.0459-23
Classification : 11N13, 11N35, 11N36
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
@article{10_21136_CMJ_2024_0459_23,
     author = {Wu, Liuying},
     title = {On the least almost-prime in arithmetic progressions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {535--548},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0459-23},
     mrnumber = {4764538},
     zbl = {07893397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/}
}
TY  - JOUR
AU  - Wu, Liuying
TI  - On the least almost-prime in arithmetic progressions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 535
EP  - 548
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/
DO  - 10.21136/CMJ.2024.0459-23
LA  - en
ID  - 10_21136_CMJ_2024_0459_23
ER  - 
%0 Journal Article
%A Wu, Liuying
%T On the least almost-prime in arithmetic progressions
%J Czechoslovak Mathematical Journal
%D 2024
%P 535-548
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/
%R 10.21136/CMJ.2024.0459-23
%G en
%F 10_21136_CMJ_2024_0459_23
Wu, Liuying. On the least almost-prime in arithmetic progressions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548. doi: 10.21136/CMJ.2024.0459-23

[1] Halberstam, H., Richert, H.-E.: Sieve Methods. London Mathematical Society Monographs 4. Academic Press, London (1974). | MR | JFM

[2] Heath-Brown, D. R.: Almost-primes in arithmetic progressions and short intervals. Math. Proc. Camb. Philos. Soc. 83 (1978), 357-375. | DOI | MR | JFM

[3] Heath-Brown, D. R.: Zero-free regions for Dirichlet $L$-functions and the least prime in an arithmetic progression. Proc. Lond. Math. Soc., III. Ser. 64 (1992), 265-338. | DOI | MR | JFM

[4] Hooley, C.: On the Brun-Titchmarsh theorem. J. Reine Angew. Math. 255 (1972), 60-79. | DOI | MR | JFM

[5] Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith. 37 (1980), 307-320. | DOI | MR | JFM

[6] Iwaniec, H.: On the Brun-Titchmarsh theorem. J. Math. Soc. Japan 34 (1982), 95-123. | DOI | MR | JFM

[7] Iwaniec, H., Laborde, M.: $P_2$ in short intervals. Ann. Inst. Fourier 31 (1981), 37-56. | DOI | MR | JFM

[8] Jurkat, W. B., Richert, H.-E.: An improvement of Selberg's sieve method. I. Acta Arith. 11 (1965), 217-240. | DOI | MR | JFM

[9] Laborde, M.: Buchstab's sifting weights. Mathematika 26 (1979), 250-257. | DOI | MR | JFM

[10] Levin, B. V.: On the least almost prime number in an arithmetic progression and the sequence $k^2x^2+1$. Usp. Mat. Nauk 20 (1965), 158-162 Russian. | MR | JFM

[11] Li, J., Zhang, M., Cai, Y.: On the least almost-prime in arithmetic progression. Czech. Math. J. 73 (2023), 177-188. | DOI | MR | JFM

[12] Linnik, Y. V.: On the least prime number in an arithmetic progression. I. The basic theorem. Mat. Sb., Nov. Ser. 15 (1944), 139-178 Russian. | MR | JFM

[13] Linnik, Y. V.: On the least prime number in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Mat. Sb., Nov. Ser. 15 (1944), 347-368 Russian. | MR | JFM

[14] Mertens, F.: A contribution to analytic number theory: On the distribution of primes. J. Reine Angew. Math. 78 (1874), 46-62 German \99999JFM99999 06.0116.01. | DOI | MR

[15] Motohashi, Y.: On almost-primes in arithmetic progressions. III. Proc. Japan Acad. 52 (1976), 116-118. | DOI | MR | JFM

[16] Pan, C. D., Pan, C. B.: Goldbach Conjecture. Science Press, Beijing (1992). | MR | JFM

[17] Xylouris, T.: On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet $L$-functions. Acta Arith. 150 (2011), 65-91. | DOI | MR | JFM

Cité par Sources :