On the least almost-prime in arithmetic progressions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
Let $\mathcal P_{2}$ denote a positive integer with at most $2$ prime factors, counted according to multiplicity. For integers $a$, $q$ such that $(a,q)=1$, let $\mathcal P_{2}(q,a)$ denote the least $\mathcal P_{2}$ in the arithmetic progression $\{nq+a\}_{n=1}^{\infty }$. It is proved that for sufficiently large $q$, we have $$ \mathcal P_{2}(q,a)\ll q^{1.825}. $$ This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained $\mathcal P_{2}(q,a)\ll q^{1.8345}.$
DOI :
10.21136/CMJ.2024.0459-23
Classification :
11N13, 11N35, 11N36
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
Keywords: almost-prime; arithmetic progression; linear sieve; Selberg's $\Lambda ^2$-sieve
@article{10_21136_CMJ_2024_0459_23,
author = {Wu, Liuying},
title = {On the least almost-prime in arithmetic progressions},
journal = {Czechoslovak Mathematical Journal},
pages = {535--548},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0459-23},
mrnumber = {4764538},
zbl = {07893397},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/}
}
TY - JOUR AU - Wu, Liuying TI - On the least almost-prime in arithmetic progressions JO - Czechoslovak Mathematical Journal PY - 2024 SP - 535 EP - 548 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0459-23/ DO - 10.21136/CMJ.2024.0459-23 LA - en ID - 10_21136_CMJ_2024_0459_23 ER -
Wu, Liuying. On the least almost-prime in arithmetic progressions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 535-548. doi: 10.21136/CMJ.2024.0459-23
Cité par Sources :