Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1059-1082
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text {-Hopf}}(A\times \nobreak H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ of Radford's $\pi $-biproduct $A \times H =\{A \times H_\alpha \}_{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha \}_{\alpha \in \pi }$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha \}_{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-}\mathcal {Y}\mathcal {D}\text {-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text {-Hopf}}(A\times \nobreak H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ of Radford's $\pi $-biproduct $A \times H =\{A \times H_\alpha \}_{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha \}_{\alpha \in \pi }$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha \}_{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-}\mathcal {Y}\mathcal {D}\text {-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
Classification :
16T05, 16U20
Keywords: Hopf group-coalgebra; Radford's $\pi $-biproduct; automorphism
Keywords: Hopf group-coalgebra; Radford's $\pi $-biproduct; automorphism
@article{10_21136_CMJ_2024_0454_23,
author = {Wang, Xing and Lu, Daowei and Wang, Ding-Guo},
title = {Characterization of automorphisms of {Radford's} biproduct of {Hopf} group-coalgebra},
journal = {Czechoslovak Mathematical Journal},
pages = {1059--1082},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0454-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/}
}
TY - JOUR AU - Wang, Xing AU - Lu, Daowei AU - Wang, Ding-Guo TI - Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1059 EP - 1082 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/ DO - 10.21136/CMJ.2024.0454-23 LA - en ID - 10_21136_CMJ_2024_0454_23 ER -
%0 Journal Article %A Wang, Xing %A Lu, Daowei %A Wang, Ding-Guo %T Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra %J Czechoslovak Mathematical Journal %D 2024 %P 1059-1082 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/ %R 10.21136/CMJ.2024.0454-23 %G en %F 10_21136_CMJ_2024_0454_23
Wang, Xing; Lu, Daowei; Wang, Ding-Guo. Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1059-1082. doi: 10.21136/CMJ.2024.0454-23
Cité par Sources :