Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1059-1082
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text {-Hopf}}(A\times \nobreak H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ of Radford's $\pi $-biproduct $A \times H =\{A \times H_\alpha \}_{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha \}_{\alpha \in \pi }$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha \}_{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-}\mathcal {Y}\mathcal {D}\text {-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford's $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text {-Hopf}}(A\times \nobreak H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ of Radford's $\pi $-biproduct $A \times H =\{A \times H_\alpha \}_{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\{H_\alpha \}_{\alpha \in \pi }$. What's more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\{F_\alpha \}_{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text {-}\mathcal {Y}\mathcal {D}\text {-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text {-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
DOI : 10.21136/CMJ.2024.0454-23
Classification : 16T05, 16U20
Keywords: Hopf group-coalgebra; Radford's $\pi $-biproduct; automorphism
@article{10_21136_CMJ_2024_0454_23,
     author = {Wang, Xing and Lu, Daowei and Wang, Ding-Guo},
     title = {Characterization of automorphisms of {Radford's} biproduct of {Hopf} group-coalgebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1059--1082},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0454-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/}
}
TY  - JOUR
AU  - Wang, Xing
AU  - Lu, Daowei
AU  - Wang, Ding-Guo
TI  - Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1059
EP  - 1082
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/
DO  - 10.21136/CMJ.2024.0454-23
LA  - en
ID  - 10_21136_CMJ_2024_0454_23
ER  - 
%0 Journal Article
%A Wang, Xing
%A Lu, Daowei
%A Wang, Ding-Guo
%T Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
%J Czechoslovak Mathematical Journal
%D 2024
%P 1059-1082
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0454-23/
%R 10.21136/CMJ.2024.0454-23
%G en
%F 10_21136_CMJ_2024_0454_23
Wang, Xing; Lu, Daowei; Wang, Ding-Guo. Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1059-1082. doi: 10.21136/CMJ.2024.0454-23

[1] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. (2) 171 (2010), 375-417. | DOI | MR | JFM

[2] Bulacu, D., Nauwelaerts, E.: Radford's biproduct for quasi-Hopf algebras and bosonization. J. Pure Appl. Algebra 174 (2002), 1-42. | DOI | MR | JFM

[3] Delvaux, L.: Multiplier Hopf algebras in categories and the biproduct construction. Algebr. Represent. Theory 10 (2007), 533-554. | DOI | MR | JFM

[4] Guo, S., Wang, S.: Crossed products of weak Hopf group coalgebras. Acta Math. Sci., Ser. A, Chin. Ed. 34 (2014), 327-337 Chinese. | MR | JFM

[5] Ma, T., Song, Y.: Hopf $\pi$-crossed biproduct and related coquasitriangular structures. Rend. Semin. Mat. Univ. Padova 130 (2013), 127-145. | DOI | MR | JFM

[6] Radford, D. E.: The structure of Hopf algebras with a projection. J. Algebra 92 (1985), 322-347. | DOI | MR | JFM

[7] Radford, D. E.: On automorphisms of biproducts. Commun. Algebra 45 (2017), 1365-1398. | DOI | MR | JFM

[8] Shen, B.-L., Liu, L.: Radford's biproducts for Hopf group-coalgebras and its quasitriangular structures. Abh. Math. Semin. Univ. Hamb. 83 (2013), 129-146. | DOI | MR | JFM

[9] Shen, B.-L., Wang, S.-H.: Blattner-Cohen-Montgomery's duality theorem for (weak) group smash products. Commun. Algebra 36 (2008), 2387-2409. | DOI | MR | JFM

[10] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). | MR | JFM

[11] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories. Available at , 76 pages. | arXiv | DOI

[12] Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. | MR | JFM

[13] Daele, A. Van, Wang, S.: New braided crossed categories and Drinfel'd quantum double for weak Hopf group coalgebras. Commun. Algebra 36 (2008), 2341-2386. | DOI | MR | JFM

[14] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171 (2002), 75-122. | DOI | MR | JFM

[15] Virelizier, A.: Graded quantum groups and quasitriangular Hopf group-coalgebras. Commun. Algebra 33 (2005), 3029-3050. | DOI | MR | JFM

[16] Wang, S.-H.: Group twisted smash products and Doi-Hopf modules for $T$-coalgebras. Commun. Algebra 32 (2004), 3417-3436. | DOI | MR | JFM

[17] Wang, S., Jiao, Z., Zhao, W.: Hopf algebra structures on crossed products. Commun. Algebra 26 (1998), 1293-1303. | DOI | MR | JFM

[18] Zunino, M.: Double construction for crossed Hopf coalgebras. J. Algebra 278 (2004), 43-75. | DOI | MR | JFM

[19] Zunino, M.: Yetter-Drinfeld modules for crossed structures. J. Pure Appl. Algebra 193 (2004), 313-343. | DOI | MR | JFM

Cité par Sources :