Keywords: approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra
@article{10_21136_CMJ_2024_0452_23,
author = {Pan, Shengyong and Yu, Jiahui},
title = {Transfer of derived equivalences from subalgebras to endomorphism algebras {II}},
journal = {Czechoslovak Mathematical Journal},
pages = {1041--1058},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0452-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/}
}
TY - JOUR AU - Pan, Shengyong AU - Yu, Jiahui TI - Transfer of derived equivalences from subalgebras to endomorphism algebras II JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1041 EP - 1058 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/ DO - 10.21136/CMJ.2024.0452-23 LA - en ID - 10_21136_CMJ_2024_0452_23 ER -
%0 Journal Article %A Pan, Shengyong %A Yu, Jiahui %T Transfer of derived equivalences from subalgebras to endomorphism algebras II %J Czechoslovak Mathematical Journal %D 2024 %P 1041-1058 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/ %R 10.21136/CMJ.2024.0452-23 %G en %F 10_21136_CMJ_2024_0452_23
Pan, Shengyong; Yu, Jiahui. Transfer of derived equivalences from subalgebras to endomorphism algebras II. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1041-1058. doi: 10.21136/CMJ.2024.0452-23
[1] Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc., II. Ser. 85 (2012), 633-668. | DOI | MR | JFM
[2] Brüstle, T., Pan, S.: Transfer of derived equivalences from subalgebras to endomorphism algebras. J. Algebra Appl. 15 (2016), Article ID 1650100, 10 pages. | DOI | MR | JFM
[3] Buan, A. B., Marsh, R. B., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204 (2006), 572-618. | DOI | MR | JFM
[4] Chen, Y.: Derived equivalences in $n$-angulated categories. Algebr. Represent. Theory 16 (2013), 1661-1684. | DOI | MR | JFM
[5] Chen, Y.: Derived equivalences between subrings. Commun. Algebra 42 (2014), 4055-4065. | DOI | MR | JFM
[6] Chen, Y., Hu, W.: Approximations, ghosts and derived equivalences. Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 813-840. | DOI | MR | JFM
[7] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning. J. Pure App. Algebra 223 (2019), 3354-3580. | DOI | MR | JFM
[8] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM
[9] Happel, D., Unger, L.: Complements and the generalized Nakayama conjecture. Algebras and Modules. II CMS Conference Proceedings 24. AMS, Providence (1998), 293-310. | MR | JFM
[10] Hoshino, M., Kato, Y.: An elementary construction of tilting complexes. J. Pure Appl. Algebra 177 (2003), 159-175. | DOI | MR | JFM
[11] Hu, W., Koenig, S., Xi, C.: Derived equivalences from cohomological approximations and mutations of $\Phi$-Yoneda algebras. Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 589-629. | DOI | MR | JFM
[12] Hu, W., Xi, C.: $D$-split sequences and derived equivalences. Adv. Math. 227 (2011), 292-318. | DOI | MR | JFM
[13] Hu, W., Xi, C.: Derived equivalences for $\Phi$-Auslander-Yoneda algebras. Trans. Am. Math. Soc. 365 (2013), 5681-5711. | DOI | MR | JFM
[14] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. | DOI | MR | JFM
[15] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | JFM
[16] Karoubi, M.: Algèbres de Clifford et K-théorie. Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270 French. | DOI | MR | JFM
[17] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). | DOI | MR | JFM
[18] Pan, S.: Symmetric approximation sequences, Beilinson-Green algebras and derived equivalences. Math. Scand. 128 (2022), 451-506. | DOI | MR | JFM
[19] Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. | DOI | MR | JFM
[20] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM
[21] Rudakov, A. N.: Exceptional collections, mutations and helices. Helices and Vector Bundles London Mathematical Society Lecture Note Series 148. Cambridge Univerity Press, Cambridge (1990), 1-6. | DOI | MR | JFM
[22] Xi, C.: On the finitistic dimension conjecture. I: Related to representation-finite algebras. J. Pure Appl. Algebra 193 (2004), 287-305. | DOI | MR | JFM
Cité par Sources :