Transfer of derived equivalences from subalgebras to endomorphism algebras II
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1041-1058
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.
We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.
DOI : 10.21136/CMJ.2024.0452-23
Classification : 16G10, 16S10, 18G15
Keywords: approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra
@article{10_21136_CMJ_2024_0452_23,
     author = {Pan, Shengyong and Yu, Jiahui},
     title = {Transfer of derived equivalences from subalgebras to endomorphism algebras {II}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1041--1058},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0452-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/}
}
TY  - JOUR
AU  - Pan, Shengyong
AU  - Yu, Jiahui
TI  - Transfer of derived equivalences from subalgebras to endomorphism algebras II
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1041
EP  - 1058
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/
DO  - 10.21136/CMJ.2024.0452-23
LA  - en
ID  - 10_21136_CMJ_2024_0452_23
ER  - 
%0 Journal Article
%A Pan, Shengyong
%A Yu, Jiahui
%T Transfer of derived equivalences from subalgebras to endomorphism algebras II
%J Czechoslovak Mathematical Journal
%D 2024
%P 1041-1058
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0452-23/
%R 10.21136/CMJ.2024.0452-23
%G en
%F 10_21136_CMJ_2024_0452_23
Pan, Shengyong; Yu, Jiahui. Transfer of derived equivalences from subalgebras to endomorphism algebras II. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1041-1058. doi: 10.21136/CMJ.2024.0452-23

[1] Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc., II. Ser. 85 (2012), 633-668. | DOI | MR | JFM

[2] Brüstle, T., Pan, S.: Transfer of derived equivalences from subalgebras to endomorphism algebras. J. Algebra Appl. 15 (2016), Article ID 1650100, 10 pages. | DOI | MR | JFM

[3] Buan, A. B., Marsh, R. B., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204 (2006), 572-618. | DOI | MR | JFM

[4] Chen, Y.: Derived equivalences in $n$-angulated categories. Algebr. Represent. Theory 16 (2013), 1661-1684. | DOI | MR | JFM

[5] Chen, Y.: Derived equivalences between subrings. Commun. Algebra 42 (2014), 4055-4065. | DOI | MR | JFM

[6] Chen, Y., Hu, W.: Approximations, ghosts and derived equivalences. Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 813-840. | DOI | MR | JFM

[7] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning. J. Pure App. Algebra 223 (2019), 3354-3580. | DOI | MR | JFM

[8] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM

[9] Happel, D., Unger, L.: Complements and the generalized Nakayama conjecture. Algebras and Modules. II CMS Conference Proceedings 24. AMS, Providence (1998), 293-310. | MR | JFM

[10] Hoshino, M., Kato, Y.: An elementary construction of tilting complexes. J. Pure Appl. Algebra 177 (2003), 159-175. | DOI | MR | JFM

[11] Hu, W., Koenig, S., Xi, C.: Derived equivalences from cohomological approximations and mutations of $\Phi$-Yoneda algebras. Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 589-629. | DOI | MR | JFM

[12] Hu, W., Xi, C.: $D$-split sequences and derived equivalences. Adv. Math. 227 (2011), 292-318. | DOI | MR | JFM

[13] Hu, W., Xi, C.: Derived equivalences for $\Phi$-Auslander-Yoneda algebras. Trans. Am. Math. Soc. 365 (2013), 5681-5711. | DOI | MR | JFM

[14] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting. Trans. Am. Math. Soc. 363 (2011), 6575-6614. | DOI | MR | JFM

[15] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules. Invent. Math. 172 (2008), 117-168. | DOI | MR | JFM

[16] Karoubi, M.: Algèbres de Clifford et K-théorie. Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270 French. | DOI | MR | JFM

[17] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). | DOI | MR | JFM

[18] Pan, S.: Symmetric approximation sequences, Beilinson-Green algebras and derived equivalences. Math. Scand. 128 (2022), 451-506. | DOI | MR | JFM

[19] Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989), 303-317. | DOI | MR | JFM

[20] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. | DOI | MR | JFM

[21] Rudakov, A. N.: Exceptional collections, mutations and helices. Helices and Vector Bundles London Mathematical Society Lecture Note Series 148. Cambridge Univerity Press, Cambridge (1990), 1-6. | DOI | MR | JFM

[22] Xi, C.: On the finitistic dimension conjecture. I: Related to representation-finite algebras. J. Pure Appl. Algebra 193 (2004), 287-305. | DOI | MR | JFM

Cité par Sources :