On the irreducible factors of a polynomial over a valued field
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 367-375
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.
We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.
DOI : 10.21136/CMJ.2024.0451-22
Classification : 11R09, 12E05, 12J10
Keywords: irreducibility; Eisenstein criterion; polynomial
@article{10_21136_CMJ_2024_0451_22,
     author = {Jakhar, Anuj},
     title = {On the irreducible factors of a polynomial over a valued field},
     journal = {Czechoslovak Mathematical Journal},
     pages = {367--375},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0451-22},
     mrnumber = {4764527},
     zbl = {07893386},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0451-22/}
}
TY  - JOUR
AU  - Jakhar, Anuj
TI  - On the irreducible factors of a polynomial over a valued field
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 367
EP  - 375
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0451-22/
DO  - 10.21136/CMJ.2024.0451-22
LA  - en
ID  - 10_21136_CMJ_2024_0451_22
ER  - 
%0 Journal Article
%A Jakhar, Anuj
%T On the irreducible factors of a polynomial over a valued field
%J Czechoslovak Mathematical Journal
%D 2024
%P 367-375
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0451-22/
%R 10.21136/CMJ.2024.0451-22
%G en
%F 10_21136_CMJ_2024_0451_22
Jakhar, Anuj. On the irreducible factors of a polynomial over a valued field. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 367-375. doi: 10.21136/CMJ.2024.0451-22

[1] Alexandru, V., Popescu, N., Zaharescu, A.: A theorem of characterization of residual transcendental extension of a valuation. J. Math. Kyoto Univ. 28 (1988), 579-592. | DOI | MR | JFM

[2] Dumas, G.: Sur quelques cas d'irréductibilité des polynomes á coefficients rationnels. J. Math. Pures Appl. 6 (1906), 191-258 French \99999JFM99999 37.0096.01.

[3] Eisenstein, G.: Über die Irreductibilität und einige andere Eigenschaften der Gleichungen, von welcher die Theilung der ganzen Lemniscate abhängt. J. Reine Angew. Math. 39 (1850), 160-179 German. | DOI | MR

[4] Engler, A. J., Prestel, A.: Valued Fields. Springer Monographs in Mathematics. Springer, New York (2005). | DOI | MR | JFM

[5] Girstmair, K.: On an irreducibility criterion of M. Ram Murty. Am. Math. Mon. 112 (2005), 269-270. | DOI | MR | JFM

[6] Gouvêa, F. Q.: $p$-adic Numbers: An Introduction. Springer, New York (2003). | DOI | MR | JFM

[7] Jakhar, A.: On the factors of a polynomial. Bull. Lond. Math. Soc. 52 (2020), 158-160. | DOI | MR | JFM

[8] Jakhar, A.: On the irreducible factors of a polynomial. Proc. Am. Math. Soc. 148 (2020), 1429-1437. | DOI | MR | JFM

[9] Jakhar, A., Srinivas, K.: On the irreducible factors of a polynomial. II. J. Algebra 556 (2020), 649-655. | DOI | MR | JFM

[10] Jhorar, B., Khanduja, S. K.: Reformulation of Hensel's lemma and extension of a theorem of Ore. Manuscr. Math. 151 (2016), 223-241. | DOI | MR | JFM

[11] Khanduja, S. K., Kumar, M.: Prolongations of valuations to finite extensions. Manuscr. Math. 131 (2010), 323-334. | DOI | MR | JFM

[12] Murty, M. Ram: Prime numbers and irreducible polynomials. Am. Math. Mon. 109 (2002), 452-458. | DOI | MR | JFM

[13] Schönemann, T.: Von denjenigen Moduln, welche Potenzen von Primzahlen sind. J. Reine Angew. Math. 32 (1846), 93-105 German. | DOI | MR

[14] Weintraub, S. H.: A mild generalization of Eisenstein's criterion. Proc. Am. Math. Soc. 141 (2013), 1159-1160. | DOI | MR | JFM

[15] Weintraub, S. H.: A family of tests for irreducibility of polynomials. Proc. Am. Math. Soc. 144 (2016), 3331-3332. | DOI | MR | JFM

Cité par Sources :