Symmetric and reversible properties of bi-amalgamated rings
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 17-27
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K'$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(K) = g^{-1}(K')$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^{f,g}(K, K')$ of $A$ with $(B, C)$ along $(K, K')$ with respect to $(f, g)$.
Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K'$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(K) = g^{-1}(K')$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^{f,g}(K, K')$ of $A$ with $(B, C)$ along $(K, K')$ with respect to $(f, g)$.
DOI : 10.21136/CMJ.2024.0449-21
Classification : 16N40, 16S99, 16U40
Keywords: amalgamated ring; unipotent; symmetric ring; reversible ring
@article{10_21136_CMJ_2024_0449_21,
     author = {Aruldoss, Antonysamy and Selvaraj, Chelliah},
     title = {Symmetric and reversible properties of bi-amalgamated rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {17--27},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0449-21},
     mrnumber = {4717820},
     zbl = {07893365},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/}
}
TY  - JOUR
AU  - Aruldoss, Antonysamy
AU  - Selvaraj, Chelliah
TI  - Symmetric and reversible properties of bi-amalgamated rings
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 17
EP  - 27
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/
DO  - 10.21136/CMJ.2024.0449-21
LA  - en
ID  - 10_21136_CMJ_2024_0449_21
ER  - 
%0 Journal Article
%A Aruldoss, Antonysamy
%A Selvaraj, Chelliah
%T Symmetric and reversible properties of bi-amalgamated rings
%J Czechoslovak Mathematical Journal
%D 2024
%P 17-27
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/
%R 10.21136/CMJ.2024.0449-21
%G en
%F 10_21136_CMJ_2024_0449_21
Aruldoss, Antonysamy; Selvaraj, Chelliah. Symmetric and reversible properties of bi-amalgamated rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 17-27. doi: 10.21136/CMJ.2024.0449-21

[1] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. | MR | JFM

[2] Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N., Lee, Y.: A concept unifying the Armendariz and $NI$ conditions. Bull. Korean Math. Soc. 48 (2011), 115-127. | DOI | MR | JFM

[3] Cohn, P. M.: Reversible rings. Bull. Lond. Math. Soc. 31 (1999), 641-648. | DOI | MR | JFM

[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and its Applications Walter De Gruyter, Berlin (2009), 155-172. | DOI | MR | JFM

[5] Farshad, N., Safarisabet, S. A., Moussavi, A.: Amalgamated rings with clean-type properties. Hacet. J. Math. Stat. 50 (2021), 1358-1370. | DOI | MR | JFM

[6] Goodearl, K. R.: Von Neumann Regular Rings. Monographs and Studies in Mathematics 4. Pitman, London (1979). | MR | JFM

[7] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals. J. Commut. Algebra 9 (2017), 65-87. | DOI | MR | JFM

[8] Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.: Generalized symmetric rings. Algebra Discrete Math. 12 (2011), 72-84. | MR | JFM

[9] Kose, H., Ungor, B., Kurtulmaz, Y., Harmanci, A.: A perspective on amalgamated rings via symmetricity. Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 237-247. | DOI | MR | JFM

[10] Lambek, J.: On the representation of modules by sheaves of factor modules. Can. Math. Bull. 14 (1971), 359-368. | DOI | MR | JFM

[11] Marks, G.: Reversible and symmetric rings. J. Pure Appl. Algebra 174 (2002), 311-318. | DOI | MR | JFM

[12] Ouyang, L., Chen, H.: On weak symmetric rings. Commun. Algebra 38 (2010), 697-713. | DOI | MR | JFM

[13] Zhao, L., Yang, G.: On weakly reversible rings. Acta Math. Univ. Comen., New Ser. 76 (2007), 189-192. | MR | JFM

Cité par Sources :