Keywords: amalgamated ring; unipotent; symmetric ring; reversible ring
@article{10_21136_CMJ_2024_0449_21,
author = {Aruldoss, Antonysamy and Selvaraj, Chelliah},
title = {Symmetric and reversible properties of bi-amalgamated rings},
journal = {Czechoslovak Mathematical Journal},
pages = {17--27},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0449-21},
mrnumber = {4717820},
zbl = {07893365},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/}
}
TY - JOUR AU - Aruldoss, Antonysamy AU - Selvaraj, Chelliah TI - Symmetric and reversible properties of bi-amalgamated rings JO - Czechoslovak Mathematical Journal PY - 2024 SP - 17 EP - 27 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/ DO - 10.21136/CMJ.2024.0449-21 LA - en ID - 10_21136_CMJ_2024_0449_21 ER -
%0 Journal Article %A Aruldoss, Antonysamy %A Selvaraj, Chelliah %T Symmetric and reversible properties of bi-amalgamated rings %J Czechoslovak Mathematical Journal %D 2024 %P 17-27 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0449-21/ %R 10.21136/CMJ.2024.0449-21 %G en %F 10_21136_CMJ_2024_0449_21
Aruldoss, Antonysamy; Selvaraj, Chelliah. Symmetric and reversible properties of bi-amalgamated rings. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 17-27. doi: 10.21136/CMJ.2024.0449-21
[1] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. | MR | JFM
[2] Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N., Lee, Y.: A concept unifying the Armendariz and $NI$ conditions. Bull. Korean Math. Soc. 48 (2011), 115-127. | DOI | MR | JFM
[3] Cohn, P. M.: Reversible rings. Bull. Lond. Math. Soc. 31 (1999), 641-648. | DOI | MR | JFM
[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and its Applications Walter De Gruyter, Berlin (2009), 155-172. | DOI | MR | JFM
[5] Farshad, N., Safarisabet, S. A., Moussavi, A.: Amalgamated rings with clean-type properties. Hacet. J. Math. Stat. 50 (2021), 1358-1370. | DOI | MR | JFM
[6] Goodearl, K. R.: Von Neumann Regular Rings. Monographs and Studies in Mathematics 4. Pitman, London (1979). | MR | JFM
[7] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals. J. Commut. Algebra 9 (2017), 65-87. | DOI | MR | JFM
[8] Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.: Generalized symmetric rings. Algebra Discrete Math. 12 (2011), 72-84. | MR | JFM
[9] Kose, H., Ungor, B., Kurtulmaz, Y., Harmanci, A.: A perspective on amalgamated rings via symmetricity. Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 237-247. | DOI | MR | JFM
[10] Lambek, J.: On the representation of modules by sheaves of factor modules. Can. Math. Bull. 14 (1971), 359-368. | DOI | MR | JFM
[11] Marks, G.: Reversible and symmetric rings. J. Pure Appl. Algebra 174 (2002), 311-318. | DOI | MR | JFM
[12] Ouyang, L., Chen, H.: On weak symmetric rings. Commun. Algebra 38 (2010), 697-713. | DOI | MR | JFM
[13] Zhao, L., Yang, G.: On weakly reversible rings. Acta Math. Univ. Comen., New Ser. 76 (2007), 189-192. | MR | JFM
Cité par Sources :