The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 735-757
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb {K} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively.
Let $G$ be a finite simple graph with the vertex set $V$ and let $I_G$ be its edge ideal in the polynomial ring $S= \mathbb {K} [V]$. We compute the depth and the Castelnuovo-Mumford regularity of $S/I_G$ when $G=G_1\circ G_2$ or $G=G_1* G_2$ is a graph obtained from Cohen-Macaulay bipartite graphs $G_1$, $G_2$ by the $\circ $ operation or $*$ operation, respectively.
DOI : 10.21136/CMJ.2024.0438-23
Classification : 05E40, 13A15, 13C15, 13D02
Keywords: regularity; depth; $\circ $ operation; $*$ operation; Cohen-Macaulay bipartite graph
@article{10_21136_CMJ_2024_0438_23,
     author = {Yang, Yulong and Zhu, Guangjun and Cui, Yijun and Duan, Shiya},
     title = {The $\circ $ operation and $*$ operation of {Cohen-Macaulay} bipartite graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {735--757},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0438-23},
     mrnumber = {4804957},
     zbl = {07953675},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0438-23/}
}
TY  - JOUR
AU  - Yang, Yulong
AU  - Zhu, Guangjun
AU  - Cui, Yijun
AU  - Duan, Shiya
TI  - The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 735
EP  - 757
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0438-23/
DO  - 10.21136/CMJ.2024.0438-23
LA  - en
ID  - 10_21136_CMJ_2024_0438_23
ER  - 
%0 Journal Article
%A Yang, Yulong
%A Zhu, Guangjun
%A Cui, Yijun
%A Duan, Shiya
%T The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs
%J Czechoslovak Mathematical Journal
%D 2024
%P 735-757
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0438-23/
%R 10.21136/CMJ.2024.0438-23
%G en
%F 10_21136_CMJ_2024_0438_23
Yang, Yulong; Zhu, Guangjun; Cui, Yijun; Duan, Shiya. The $\circ $ operation and $*$ operation of Cohen-Macaulay bipartite graphs. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 735-757. doi: 10.21136/CMJ.2024.0438-23

[1] Banerjee, A., Beyarslan, S. K., Hà, H. T.: Regularity of edge ideals and their powers. Advances in Algebra Springer Proceedings in Mathematics & Statistics 277. Springer, Cham (2019), 17-52. | DOI | MR | JFM

[2] Bıyıkoğlu, T., Civan, Y.: Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness and Castelnuovo-Mumford regularity. Electron. J. Comb. 21 (2014), Article ID P1.1, 17 pages. | DOI | MR | JFM

[3] Bolognini, D., Macchia, A., Strazzanti, F.: Binomial edge ideals of bipartite graphs. Eur. J. Comb. 70 (2018), 1-25. | DOI | MR | JFM

[4] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008). | DOI | MR | JFM

[5] Francisco, C. A., Hà, H. T., Tuyl, A. Van: Splittings of monomial ideals. Proc. Am. Math. Soc. 137 (2009), 3271-3282. | DOI | MR | JFM

[6] Fouli, L., Hà, H. T., Morey, S.: Initially regular sequences and depths of ideals. J. Algebra 559 (2020), 33-57. | DOI | MR | JFM

[7] Fouli, L., Morey, S.: A lower bound for depths of powers of edge ideals. J. Algebr. Comb. 42 (2015), 829-848. | DOI | MR | JFM

[8] Hà, H. T., Tuyl, A. Van: Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebr. Comb. 27 (2008), 215-245. | DOI | MR | JFM

[9] Herzog, J.: A generalization of the Taylor complex construction. Commun. Algebra 35 (2007), 1747-1756. | DOI | MR | JFM

[10] Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebr. Comb. 22 (2005), 289-302. | DOI | MR | JFM

[11] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics 260. Springer, London (2011). | DOI | MR | JFM

[12] Herzog, J., Moradi, S., Rahimbeigi, M.: The edge ideal of a graph and its splitting graphs. J. Commut. Algebra 14 (2022), 27-35. | DOI | MR | JFM

[13] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals. Arch. Math. 94 (2010), 327-337. | DOI | MR | JFM

[14] Kalai, G., Meshulam, R.: Intersections of Leray complexes and regularity of monomial ideals. J. Comb. Theory, Ser. A 113 (2006), 1586-1592. | DOI | MR | JFM

[15] Katzman, M.: Characteristic-independence of Betti numbers of graph ideals. J. Comb. Theory, Ser. A 113 (2006), 435-454. | DOI | MR | JFM

[16] Khosh-Ahang, F., Moradi, S.: Regularity and projective dimension of edge ideal of $C_5$-free vertex decomposable graphs. Proc. Am. Math. Soc. 142 (2014), 1567-1576. | DOI | MR | JFM

[17] Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebr. Comb. 30 (2009), 429-445. | DOI | MR | JFM

[18] Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and regularity of very well-covered graphs. J. Pure Appl. Algebra 215 (2011), 2473-2480. | DOI | MR | JFM

[19] Morey, S., Villarreal, R. H.: Edge ideals: Algebraic and combinatorial properties. Progress in Commutative Algebra 1 Walter de Gruyter, Berlin (2012), 85-126. | DOI | MR | JFM

[20] Shen, Y. H., Zhu, G.: Generalized binomial edge ideals of bipartite graphs. Available at , 31 pages. | arXiv | DOI | MR

[21] Tuyl, A. Van: Sequentially Cohen-Macaulay bipartite graphs: Vertex decomposability and regularity. Arch. Math. 93 (2009), 451-459. | DOI | MR | JFM

[22] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics, Marcel Dekker 238. Marcel Dekker, New York (2001). | MR | JFM

[23] Woodroofe, R.: Matchings, coverings, and Castelnuovo-Mumford regularity. J. Commut. Algebra 6 (2014), 287-304. | DOI | MR | JFM

[24] Zhu, G.: Projective dimension and regularity of the path ideals of the line graph. J. Algebra Appl. 17 (2018), Article ID 1850068, 15 pages. | DOI | MR | JFM

[25] Zhu, G.: Projective dimension and regularity of path ideals of cycles. J. Algebra Appl. 17 (2018), Article ID 1850188, 22 pages. | DOI | MR | JFM

[26] Zhu, G., Cui, Y., Yang, Y., Yang, Y.: The $\circ$ operation and $*$ operation of fan graphs. Available at , 18 pages. | arXiv | DOI

Cité par Sources :