Keywords: CJ ring; center; Jacobson radical; clean ring
@article{10_21136_CMJ_2024_0433_23,
author = {Ma, Guanglin and Wang, Yao and Leroy, Andr\'e},
title = {Rings in which elements are sum of a central element and an element in the {Jacobson} radical},
journal = {Czechoslovak Mathematical Journal},
pages = {515--533},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0433-23},
mrnumber = {4764537},
zbl = {07893396},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0433-23/}
}
TY - JOUR AU - Ma, Guanglin AU - Wang, Yao AU - Leroy, André TI - Rings in which elements are sum of a central element and an element in the Jacobson radical JO - Czechoslovak Mathematical Journal PY - 2024 SP - 515 EP - 533 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0433-23/ DO - 10.21136/CMJ.2024.0433-23 LA - en ID - 10_21136_CMJ_2024_0433_23 ER -
%0 Journal Article %A Ma, Guanglin %A Wang, Yao %A Leroy, André %T Rings in which elements are sum of a central element and an element in the Jacobson radical %J Czechoslovak Mathematical Journal %D 2024 %P 515-533 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0433-23/ %R 10.21136/CMJ.2024.0433-23 %G en %F 10_21136_CMJ_2024_0433_23
Ma, Guanglin; Wang, Yao; Leroy, André. Rings in which elements are sum of a central element and an element in the Jacobson radical. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 515-533. doi: 10.21136/CMJ.2024.0433-23
[1] Amitsur, S. A.: Radicals of polynomial rings. Can. J. Math. 8 (1956), 355-361. | DOI | MR | JFM
[2] Călugăreanu, G.: UU rings. Carpathian J. Math. 31 (2015), 157-163. | MR | JFM
[3] Chen, J., Nicholson, W. K., Zhou, Y.: Group rings in which every element is uniquely the sum of a unit and an idempotent. J. Algebra 306 (2006), 453-460. | DOI | MR | JFM
[4] Connell, I. G.: On the group ring. Can. J. Math. 15 (1963), 650-685. | DOI | MR | JFM
[5] Danchev, P. V.: Rings with Jacobson units. Toyama Math. J. 38 (2016), 61-74. | MR | JFM
[6] Danchev, P. V., Lam, T.-Y.: Rings with unipotent units. Publ. Math. Debr. 88 (2016), 449-466. | DOI | MR | JFM
[7] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM
[8] Harmanci, A., Chen, H., Özcan, A. Ç.: Strongly nil $*$-clean rings. J. Algebra Comb. Discrete Struct. Appl. 4 (2017), 155-164. | DOI | MR | JFM
[9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressable as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ. 30 (1988), 33-40. | MR | JFM
[10] Khashan, A. H.: $NR$-clean rings. Vietnam J. Math. 44 (2016), 749-459. | DOI | MR | JFM
[11] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logic 47 (2008), 258-262. | DOI | MR | JFM
[12] Kurtulmaz, Y., Halicioglu, S., Harmanci, A., Chen, H.: Rings in which elements are a sum of a central and a unit element. Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 619-631. | DOI | MR | JFM
[13] Kurtulmaz, Y., Harmanci, A.: Rings in which elements are a sum of a central and a nilpotent element. Available at , 15 pages. | arXiv | DOI | MR
[14] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Text in Mathematics 131. Springer, New York (1991). | DOI | MR | JFM
[15] Li, C., Zhou, Y.: On strongly $*$-clean rings. J. Algebra Appl. 10 (2011), 1363-1370. | DOI | MR | JFM
[16] Nicholson, W. K.: Lifting idempotents and exchange rings. Trans. Am. Math. Soc. 229 (1977), 269-278. | DOI | MR | JFM
[17] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg. Math. J. 46 (2004), 227-236. | DOI | MR | JFM
[18] Wang, Y., Zhou, H., Ren, Y.: Some properties of ring $R\{D,C\}$. Math. Pract. Theory 50 (2020), 173-181. | JFM
Cité par Sources :