Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 493-514
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.
We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.
DOI : 10.21136/CMJ.2024.0431-23
Classification : 42B20, 42B35
Keywords: bilinear fractional Hardy operator; rough kernel; central Morrey space; variable exponent
@article{10_21136_CMJ_2024_0431_23,
     author = {Wang, Hongbin and Niu, Chenchen},
     title = {Bilinear fractional {Hardy-type} operators with rough kernels on central {Morrey} spaces with variable exponents},
     journal = {Czechoslovak Mathematical Journal},
     pages = {493--514},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0431-23},
     mrnumber = {4764536},
     zbl = {07893395},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/}
}
TY  - JOUR
AU  - Wang, Hongbin
AU  - Niu, Chenchen
TI  - Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 493
EP  - 514
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/
DO  - 10.21136/CMJ.2024.0431-23
LA  - en
ID  - 10_21136_CMJ_2024_0431_23
ER  - 
%0 Journal Article
%A Wang, Hongbin
%A Niu, Chenchen
%T Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
%J Czechoslovak Mathematical Journal
%D 2024
%P 493-514
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/
%R 10.21136/CMJ.2024.0431-23
%G en
%F 10_21136_CMJ_2024_0431_23
Wang, Hongbin; Niu, Chenchen. Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 493-514. doi: 10.21136/CMJ.2024.0431-23

[1] Alvarez, J., Lakey, J., Guzmán-Partida, M.: Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures. Collect. Math. 51 (2000), 1-47. | MR | JFM

[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR | JFM

[3] Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities. Proc. Am. Math. Soc. 123 (1995), 1687-1693. | DOI | MR | JFM

[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR | JFM

[5] Cruz-Uribe, D., Wang, D.: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. | DOI | MR | JFM

[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM

[7] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators. Forum Math. 27 (2015), 2825-2851. | DOI | MR | JFM

[8] Fu, Z., Lin, Y.: $\lambda$-central BMO estimates for commutators of higher dimensional fractional Hardy operators. Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. | DOI | MR | JFM

[9] Fu, Z., Liu, Z., Lu, S., Wang, H.: Characterization for commutators of $n$-dimensional fractional Hardy operators. Sci. China, Ser. A 50 (2007), 1418-1426. | DOI | MR | JFM

[10] Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. 33 (2021), 505-529. | DOI | MR | JFM

[11] Fu, Z., Lu, S., Wang, H., Wang, L.: Singular integral operators with rough kernels on central Morrey spaces with variable exponent. Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. | DOI | MR | JFM

[12] Fu, Z., Lu, S., Zhao, F.: Commutators of $n$-dimensional rough Hardy operators. Sci. China, Math. 54 (2011), 95-104. | DOI | MR | JFM

[13] Hardy, G. H.: Note on a theorem of Hilbert. Math. Z. 6 (1920), 314-317 \99999JFM99999 47.0207.01. | DOI | MR

[14] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. | DOI | MR | JFM

[15] Ho, K.-P.: Hardy's inequality on Hardy-Morrey spaces with variable exponents. Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. | DOI | MR | JFM

[16] Hussain, A., Asim, M., Jarad, F.: Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators. J. Math. 2022 (2022), Article ID 5855068, 12 pages. | DOI | MR

[17] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. | DOI | MR | JFM

[18] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM

[19] Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator. Stud. Math. 227 (2015), 1-19. | DOI | MR | JFM

[20] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent. Hokkaido Math. J. 44 (2015), 185-201. | DOI | MR | JFM

[21] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. | DOI | MR | JFM

[22] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-212 German. | DOI | JFM

[23] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM

[24] Shi, S., Fu, Z., Lu, S.: On the compactness of commutators of Hardy operators. Pac. J. Math. 307 (2020), 239-256. | DOI | MR | JFM

[25] Shi, S., Lu, S.: Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 429 (2015), 713-732. | DOI | MR | JFM

[26] Tan, J., Liu, Z.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces. Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. | DOI | MR | JFM

[27] Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11 (2017), 715-734. | DOI | MR | JFM

[28] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics 123. Academic Press, New York (1986). | MR | JFM

[29] Wang, H.: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czech. Math. J. 66 (2016), 251-269. | DOI | MR | JFM

[30] Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J. Math. 56 (2016), 559-573. | DOI | MR | JFM

[31] Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J. Korean Math. Soc. 54 (2017), 713-732. | DOI | MR | JFM

[32] Wang, H., Fu, Z.: Estimates of commutators on Herz-type spaces with variable exponent and applications. Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. | DOI | MR | JFM

[33] Wang, H., Liao, F.: Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent. Chin. Ann. Math., Ser. B 41 (2020), 99-116. | DOI | MR | JFM

[34] Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent. Ann. Funct. Anal. 11 (2020), 1108-1125. | DOI | MR | JFM

[35] Wang, H., Xu, J.: Multilinear fractional integral operators on central Morrey spaces with variable exponent. J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. | DOI | MR | JFM

[36] Wang, H., Xu, J., Tan, J.: Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents. Front. Math. China 15 (2020), 1011-1034. | DOI | MR | JFM

[37] Wang, L.: Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent. Bull. Korean Math. Soc. 57 (2020), 1427-1449. | DOI | MR | JFM

[38] Wu, Q. Y., Fu, Z. W.: Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. | DOI | MR | JFM

[39] Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. | MR | JFM

[40] Yang, D., Yuan, W., Zhuo, C.: Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9 (2015), 146-202. | DOI | MR | JFM

[41] Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269 (2015), 1840-1898. | DOI | MR | JFM

[42] Zhao, F., Fu, Z., Lu, S.: $M_p$ weights for bilinear Hardy operators on $\Bbb{R}^n$. Collect. Math. 65 (2014), 87-102. | DOI | MR | JFM

Cité par Sources :