Keywords: bilinear fractional Hardy operator; rough kernel; central Morrey space; variable exponent
@article{10_21136_CMJ_2024_0431_23,
author = {Wang, Hongbin and Niu, Chenchen},
title = {Bilinear fractional {Hardy-type} operators with rough kernels on central {Morrey} spaces with variable exponents},
journal = {Czechoslovak Mathematical Journal},
pages = {493--514},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0431-23},
mrnumber = {4764536},
zbl = {07893395},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/}
}
TY - JOUR AU - Wang, Hongbin AU - Niu, Chenchen TI - Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents JO - Czechoslovak Mathematical Journal PY - 2024 SP - 493 EP - 514 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/ DO - 10.21136/CMJ.2024.0431-23 LA - en ID - 10_21136_CMJ_2024_0431_23 ER -
%0 Journal Article %A Wang, Hongbin %A Niu, Chenchen %T Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents %J Czechoslovak Mathematical Journal %D 2024 %P 493-514 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0431-23/ %R 10.21136/CMJ.2024.0431-23 %G en %F 10_21136_CMJ_2024_0431_23
Wang, Hongbin; Niu, Chenchen. Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 493-514. doi: 10.21136/CMJ.2024.0431-23
[1] Alvarez, J., Lakey, J., Guzmán-Partida, M.: Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures. Collect. Math. 51 (2000), 1-47. | MR | JFM
[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. | DOI | MR | JFM
[3] Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities. Proc. Am. Math. Soc. 123 (1995), 1687-1693. | DOI | MR | JFM
[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. | MR | JFM
[5] Cruz-Uribe, D., Wang, D.: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. | DOI | MR | JFM
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). | DOI | MR | JFM
[7] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators. Forum Math. 27 (2015), 2825-2851. | DOI | MR | JFM
[8] Fu, Z., Lin, Y.: $\lambda$-central BMO estimates for commutators of higher dimensional fractional Hardy operators. Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. | DOI | MR | JFM
[9] Fu, Z., Liu, Z., Lu, S., Wang, H.: Characterization for commutators of $n$-dimensional fractional Hardy operators. Sci. China, Ser. A 50 (2007), 1418-1426. | DOI | MR | JFM
[10] Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. 33 (2021), 505-529. | DOI | MR | JFM
[11] Fu, Z., Lu, S., Wang, H., Wang, L.: Singular integral operators with rough kernels on central Morrey spaces with variable exponent. Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. | DOI | MR | JFM
[12] Fu, Z., Lu, S., Zhao, F.: Commutators of $n$-dimensional rough Hardy operators. Sci. China, Math. 54 (2011), 95-104. | DOI | MR | JFM
[13] Hardy, G. H.: Note on a theorem of Hilbert. Math. Z. 6 (1920), 314-317 \99999JFM99999 47.0207.01. | DOI | MR
[14] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. | DOI | MR | JFM
[15] Ho, K.-P.: Hardy's inequality on Hardy-Morrey spaces with variable exponents. Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. | DOI | MR | JFM
[16] Hussain, A., Asim, M., Jarad, F.: Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators. J. Math. 2022 (2022), Article ID 5855068, 12 pages. | DOI | MR
[17] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. | DOI | MR | JFM
[18] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | DOI | MR | JFM
[19] Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator. Stud. Math. 227 (2015), 1-19. | DOI | MR | JFM
[20] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent. Hokkaido Math. J. 44 (2015), 185-201. | DOI | MR | JFM
[21] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. | DOI | MR | JFM
[22] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-212 German. | DOI | JFM
[23] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). | DOI | MR | JFM
[24] Shi, S., Fu, Z., Lu, S.: On the compactness of commutators of Hardy operators. Pac. J. Math. 307 (2020), 239-256. | DOI | MR | JFM
[25] Shi, S., Lu, S.: Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 429 (2015), 713-732. | DOI | MR | JFM
[26] Tan, J., Liu, Z.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces. Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. | DOI | MR | JFM
[27] Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11 (2017), 715-734. | DOI | MR | JFM
[28] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics 123. Academic Press, New York (1986). | MR | JFM
[29] Wang, H.: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czech. Math. J. 66 (2016), 251-269. | DOI | MR | JFM
[30] Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J. Math. 56 (2016), 559-573. | DOI | MR | JFM
[31] Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J. Korean Math. Soc. 54 (2017), 713-732. | DOI | MR | JFM
[32] Wang, H., Fu, Z.: Estimates of commutators on Herz-type spaces with variable exponent and applications. Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. | DOI | MR | JFM
[33] Wang, H., Liao, F.: Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent. Chin. Ann. Math., Ser. B 41 (2020), 99-116. | DOI | MR | JFM
[34] Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent. Ann. Funct. Anal. 11 (2020), 1108-1125. | DOI | MR | JFM
[35] Wang, H., Xu, J.: Multilinear fractional integral operators on central Morrey spaces with variable exponent. J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. | DOI | MR | JFM
[36] Wang, H., Xu, J., Tan, J.: Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents. Front. Math. China 15 (2020), 1011-1034. | DOI | MR | JFM
[37] Wang, L.: Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent. Bull. Korean Math. Soc. 57 (2020), 1427-1449. | DOI | MR | JFM
[38] Wu, Q. Y., Fu, Z. W.: Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. | DOI | MR | JFM
[39] Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. | MR | JFM
[40] Yang, D., Yuan, W., Zhuo, C.: Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9 (2015), 146-202. | DOI | MR | JFM
[41] Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269 (2015), 1840-1898. | DOI | MR | JFM
[42] Zhao, F., Fu, Z., Lu, S.: $M_p$ weights for bilinear Hardy operators on $\Bbb{R}^n$. Collect. Math. 65 (2014), 87-102. | DOI | MR | JFM
Cité par Sources :