Keywords: triangulated category; $n$-angulated category; exact category; $(n-2)$-exact category; right $n$-angulated category; one-sided $n$-suspended category
@article{10_21136_CMJ_2024_0424_23,
author = {He, Jing and Hu, Yonggang and Zhou, Panyue},
title = {One-sided $n$-suspended categories},
journal = {Czechoslovak Mathematical Journal},
pages = {1007--1039},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0424-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0424-23/}
}
TY - JOUR AU - He, Jing AU - Hu, Yonggang AU - Zhou, Panyue TI - One-sided $n$-suspended categories JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1007 EP - 1039 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0424-23/ DO - 10.21136/CMJ.2024.0424-23 LA - en ID - 10_21136_CMJ_2024_0424_23 ER -
He, Jing; Hu, Yonggang; Zhou, Panyue. One-sided $n$-suspended categories. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1007-1039. doi: 10.21136/CMJ.2024.0424-23
[1] Bergh, P. A., Thaule, M.: The axioms for $n$-angulated categories. Algebr. Geom. Topol. 13 (2013), 2405-2428. | DOI | MR | JFM
[2] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. | DOI | MR | JFM
[3] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. | DOI | MR | JFM
[4] Li, Z.-W.: Homotopy theory in additive categories with suspensions. Commun. Algebra 49 (2021), 5137-5170. | DOI | MR | JFM
[5] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs. Czech. Math. J. 65 (2015), 953-968. | DOI | MR | JFM
[6] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories. Commun. Algebra 45 (2017), 828-840. | DOI | MR | JFM
Cité par Sources :