Cotorsion pairs in comma categories
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 715-734
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal {A}$ and $\mathcal {B}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal {A}\rightarrow \mathcal {B}$ a left exact additive functor. Then one has a comma category $(\mathopen {\mathcal {B} \downarrow T})$. It is shown that if $T \colon \mathcal {A}\rightarrow \mathcal {B}$ is $\mathcal {X}$-exact, then $(^\bot \mathcal {X}, \mathcal {X})$ is a (hereditary) cotorsion pair in $\mathcal {A}$ and $(^\bot \mathcal {Y}, \mathcal {Y})$) is a (hereditary) cotorsion pair in $\mathcal {B}$ if and only if $\bigl (\binom {^\bot \mathcal {X}}{^\bot \mathcal {Y}} \bigr ), \langle {\bf h}(\mathcal {X}, \mathcal {Y})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen {\mathcal {B}\downarrow T})$ and $\mathcal {X}$ and $\mathcal {Y}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal {A}$ and $\mathcal {B}$ can induce special preenveloping classes in $(\mathopen {\mathcal {B}\downarrow T})$.
Let $\mathcal {A}$ and $\mathcal {B}$ be abelian categories with enough projective and injective objects, and $T \colon \mathcal {A}\rightarrow \mathcal {B}$ a left exact additive functor. Then one has a comma category $(\mathopen {\mathcal {B} \downarrow T})$. It is shown that if $T \colon \mathcal {A}\rightarrow \mathcal {B}$ is $\mathcal {X}$-exact, then $(^\bot \mathcal {X}, \mathcal {X})$ is a (hereditary) cotorsion pair in $\mathcal {A}$ and $(^\bot \mathcal {Y}, \mathcal {Y})$) is a (hereditary) cotorsion pair in $\mathcal {B}$ if and only if $\bigl (\binom {^\bot \mathcal {X}}{^\bot \mathcal {Y}} \bigr ), \langle {\bf h}(\mathcal {X}, \mathcal {Y})\rangle )$ is a (hereditary) cotorsion pair in $(\mathopen {\mathcal {B}\downarrow T})$ and $\mathcal {X}$ and $\mathcal {Y}$ are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories $\mathcal {A}$ and $\mathcal {B}$ can induce special preenveloping classes in $(\mathopen {\mathcal {B}\downarrow T})$.
DOI :
10.21136/CMJ.2024.0420-23
Classification :
16E30, 18A25, 18G25
Keywords: comma category; cocompatible functor; cotorsion pair
Keywords: comma category; cocompatible functor; cotorsion pair
@article{10_21136_CMJ_2024_0420_23,
author = {Yuan, Yuan and He, Jian and Wu, Dejun},
title = {Cotorsion pairs in comma categories},
journal = {Czechoslovak Mathematical Journal},
pages = {715--734},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0420-23},
mrnumber = {4804956},
zbl = {07953674},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0420-23/}
}
TY - JOUR AU - Yuan, Yuan AU - He, Jian AU - Wu, Dejun TI - Cotorsion pairs in comma categories JO - Czechoslovak Mathematical Journal PY - 2024 SP - 715 EP - 734 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0420-23/ DO - 10.21136/CMJ.2024.0420-23 LA - en ID - 10_21136_CMJ_2024_0420_23 ER -
Yuan, Yuan; He, Jian; Wu, Dejun. Cotorsion pairs in comma categories. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 715-734. doi: 10.21136/CMJ.2024.0420-23
Cité par Sources :