Keywords: comma category; cocompatible functor; cotorsion pair
@article{10_21136_CMJ_2024_0420_23,
author = {Yuan, Yuan and He, Jian and Wu, Dejun},
title = {Cotorsion pairs in comma categories},
journal = {Czechoslovak Mathematical Journal},
pages = {715--734},
year = {2024},
volume = {74},
number = {3},
doi = {10.21136/CMJ.2024.0420-23},
mrnumber = {4804956},
zbl = {07953674},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0420-23/}
}
TY - JOUR AU - Yuan, Yuan AU - He, Jian AU - Wu, Dejun TI - Cotorsion pairs in comma categories JO - Czechoslovak Mathematical Journal PY - 2024 SP - 715 EP - 734 VL - 74 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0420-23/ DO - 10.21136/CMJ.2024.0420-23 LA - en ID - 10_21136_CMJ_2024_0420_23 ER -
Yuan, Yuan; He, Jian; Wu, Dejun. Cotorsion pairs in comma categories. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 715-734. doi: 10.21136/CMJ.2024.0420-23
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Chen, X.-W., Le, J.: Recollements, comma categories and morphic enhancements. Proc. R. Soc. Edinb., Sect. A, Math. 152 (2022), 567-591. | DOI | MR | JFM
[3] Chen, X.-W., Shen, D., Zhou, G.: The Gorenstein-projective modules over a monomial algebra. Proc. R. Soc. Edinb., Sect. A, Math. 148 (2018), 1115-1134. | DOI | MR | JFM
[4] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories With Applications to Ring Theory. Lecture Notes in Mathematics 456. Springer, Berlin (1975). | DOI | MR | JFM
[5] Gabriel, P., Roiter, A. V.: Representations of Finite-Dimensional Algebras. Encyclopaedia of Mathematical Sciences 73. Springer, Berlin (1992). | MR | JFM
[6] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. Volume 2. Predictions. De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin (2012). | DOI | MR | JFM
[7] Hovey, M.: Cotorsion pairs and model categories. Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 277-296. | DOI | MR | JFM
[8] Hu, J., Zhu, H.: Special precovering classes in comma categories. Sci. China, Math. 65 (2022), 933-950. | DOI | MR | JFM
[9] Kalck, M.: Singularity categories of gentle algebras. Bull. Lond. Math. Soc. 47 (2015), 65-74. | DOI | MR | JFM
[10] Marmaridis, N.: Comma categories in representation theory. Commun. Algebra 11 (1983), 1919-1943. | DOI | MR | JFM
[11] Salce, L.: Cotorsion theories for abelian groups. Symposia Mathematica. Volume 23 Academic Press, London (1979), 11-32. | MR | JFM
Cité par Sources :