Partitioning planar graph of girth 5 into two forests with maximum degree 4
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 355-366
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _{d_{1}},\Delta _{d_{2}})$-partition. And we say $G$ admits an $(F_{d_{1}}, F_{d_{2}})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_{1}$ and $d_{2}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.
Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _{d_{1}},\Delta _{d_{2}})$-partition. And we say $G$ admits an $(F_{d_{1}}, F_{d_{2}})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_{1}$ and $d_{2}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.
DOI : 10.21136/CMJ.2024.0394-21
Classification : 05C10, 05C69
Keywords: vertex partition; girth; forest; maximum degree
@article{10_21136_CMJ_2024_0394_21,
     author = {Chen, Min and Raspaud, Andr\'e and Wang, Weifan and Yu, Weiqiang},
     title = {Partitioning planar graph of girth 5 into two forests with maximum degree 4},
     journal = {Czechoslovak Mathematical Journal},
     pages = {355--366},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0394-21},
     mrnumber = {4764526},
     zbl = {07893385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/}
}
TY  - JOUR
AU  - Chen, Min
AU  - Raspaud, André
AU  - Wang, Weifan
AU  - Yu, Weiqiang
TI  - Partitioning planar graph of girth 5 into two forests with maximum degree 4
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 355
EP  - 366
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/
DO  - 10.21136/CMJ.2024.0394-21
LA  - en
ID  - 10_21136_CMJ_2024_0394_21
ER  - 
%0 Journal Article
%A Chen, Min
%A Raspaud, André
%A Wang, Weifan
%A Yu, Weiqiang
%T Partitioning planar graph of girth 5 into two forests with maximum degree 4
%J Czechoslovak Mathematical Journal
%D 2024
%P 355-366
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/
%R 10.21136/CMJ.2024.0394-21
%G en
%F 10_21136_CMJ_2024_0394_21
Chen, Min; Raspaud, André; Wang, Weifan; Yu, Weiqiang. Partitioning planar graph of girth 5 into two forests with maximum degree 4. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 355-366. doi: 10.21136/CMJ.2024.0394-21

[1] Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Ill. J. Math. 21 (1977), 429-490. | DOI | MR | JFM

[2] Appel, K., Haken, W.: Every planar map is four colorable. II. Reducibility. Ill. J. Math. 21 (1977), 491-567. | DOI | MR | JFM

[3] Borodin, O. V.: A proof of Grünbaum's conjecture on the acyclic 5-colorability of planar graphs. Dokl. Akad. Nauk SSSR 231 (1976), 18-20 Russian. | MR | JFM

[4] Borodin, O. V., Glebov, A. N.: On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph. Diskretn. Anal. Issled. Oper., Ser. 1 8 (2001), 34-53 Russian. | MR | JFM

[5] Borodin, O. V., Ivanova, A. O.: Near-proper vertex 2-colorings of sparse graphs. Diskretn. Anal. Issled. Oper. 16 (2009), 16-20 Russian. | MR | JFM

[6] Borodin, O. V., Kostochka, A. V.: Vertex decompositions of sparse graphs into an independent set and a subgraph of maximum degree at most 1. Sib. Math. J. 52 (2011), 796-801. | DOI | MR | JFM

[7] Borodin, O. V., Kostochka, A. V.: Defective 2-colorings of sparse graphs. J. Comb. Theory, Ser. B 104 (2014), 72-80. | DOI | MR | JFM

[8] Chartrand, G., Kronk, H. V.: The point-arboricity of planar graphs. J. Lond. Math. Soc. 44 (1969), 612-616. | DOI | MR | JFM

[9] Chen, M., Raspaud, A., Wang, W.: Vertex-arboricity of planar graphs without intersecting triangles. Eur. J. Comb. 33 (2012), 905-923. | DOI | MR | JFM

[10] Chen, M., Yu, W., Wang, W.: On the vertex partitions of sparse graphs into an independent vertex set and a forest with bounded maximum degree. Appl. Math. Comput. 326 (2018), 117-123. | DOI | MR | JFM

[11] Choi, H., Choi, I., Jeong, J., Suh, G.: $(1, k)$-coloring of graphs with girth at least five on a surface. J. Graph Theory 84 (2017), 521-535. | DOI | MR | JFM

[12] Choi, I., Raspaud, A.: Planar graphs with girth at least 5 are (3,5)-colorable. Discrete Math. 338 (2015), 661-667. | DOI | MR | JFM

[13] Dross, F., Montassier, M., Pinlou, A.: Partitioning a triangle-free planar graph into a forest and a forest of bounded degree. Eur. J. Comb. 66 (2017), 81-94. | DOI | MR | JFM

[14] Feghali, C., Šámal, R.: Decomposing a triangle-free planar graph into a forest and a subcubic forest. Eur. J. Comb. 116 (2024), Article ID 103878, 6 pages. | DOI | MR | JFM

[15] Havet, F., Sereni, J.-S.: Improper choosability of graphs and maximum average degree. J. Graph Theory 52 (2006), 181-199. | DOI | MR | JFM

[16] Kim, J., Kostochka, A., Zhu, X.: Improper coloring of sparse graphs with a given girth. I. (0,1)-colorings of triangle-free graphs. Eur. J. Comb. 42 (2014), 26-48. | DOI | MR | JFM

[17] Montassier, M., Ochem, P.: Near-colorings: Non-colorable graphs and NP-completeness. Electron. J. Comb. 22 (2015), Article ID P1.57, 13 pages. | DOI | MR | JFM

[18] Poh, K. S.: On the linear vertex-arboricity of a planar graph. J. Graph Theory 14 (1990), 73-75. | DOI | MR | JFM

[19] Raspaud, A., Wang, W.: On the vertex-arboricity of planar graphs. Eur. J. Comb. 29 (2008), 1064-1075. | DOI | MR | JFM

[20] Zhang, M., Chen, M., Wang, Y.: A sufficient condition for planar graphs with girth 5 to be (1,7)-colorable. J. Comb. Optim. 33 (2017), 847-865. | DOI | MR | JFM

Cité par Sources :