Partitioning planar graph of girth 5 into two forests with maximum degree 4
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 355-366 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _{d_{1}},\Delta _{d_{2}})$-partition. And we say $G$ admits an $(F_{d_{1}}, F_{d_{2}})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_{1}$ and $d_{2}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.
Given a graph $G=(V, E)$, if we can partition the vertex set $V$ into two nonempty subsets $V_1$ and $V_2$ which satisfy $\Delta (G[V_1])\le d_1$ and $\Delta (G[V_2])\le d_2$, then we say $G$ has a $(\Delta _{d_{1}},\Delta _{d_{2}})$-partition. And we say $G$ admits an $(F_{d_{1}}, F_{d_{2}})$-partition if $G[V_1]$ and $G[V_2]$ are both forests whose maximum degree is at most $d_{1}$ and $d_{2}$, respectively. We show that every planar graph with girth at least 5 has an $(F_4, F_4)$-partition.
DOI : 10.21136/CMJ.2024.0394-21
Classification : 05C10, 05C69
Keywords: vertex partition; girth; forest; maximum degree
@article{10_21136_CMJ_2024_0394_21,
     author = {Chen, Min and Raspaud, Andr\'e and Wang, Weifan and Yu, Weiqiang},
     title = {Partitioning planar graph of girth 5 into two forests with maximum degree 4},
     journal = {Czechoslovak Mathematical Journal},
     pages = {355--366},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0394-21},
     mrnumber = {4764526},
     zbl = {07893385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/}
}
TY  - JOUR
AU  - Chen, Min
AU  - Raspaud, André
AU  - Wang, Weifan
AU  - Yu, Weiqiang
TI  - Partitioning planar graph of girth 5 into two forests with maximum degree 4
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 355
EP  - 366
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/
DO  - 10.21136/CMJ.2024.0394-21
LA  - en
ID  - 10_21136_CMJ_2024_0394_21
ER  - 
%0 Journal Article
%A Chen, Min
%A Raspaud, André
%A Wang, Weifan
%A Yu, Weiqiang
%T Partitioning planar graph of girth 5 into two forests with maximum degree 4
%J Czechoslovak Mathematical Journal
%D 2024
%P 355-366
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/
%R 10.21136/CMJ.2024.0394-21
%G en
%F 10_21136_CMJ_2024_0394_21
Chen, Min; Raspaud, André; Wang, Weifan; Yu, Weiqiang. Partitioning planar graph of girth 5 into two forests with maximum degree 4. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 355-366. doi: 10.21136/CMJ.2024.0394-21

Cité par Sources :