Keywords: vertex partition; girth; forest; maximum degree
@article{10_21136_CMJ_2024_0394_21,
author = {Chen, Min and Raspaud, Andr\'e and Wang, Weifan and Yu, Weiqiang},
title = {Partitioning planar graph of girth 5 into two forests with maximum degree 4},
journal = {Czechoslovak Mathematical Journal},
pages = {355--366},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0394-21},
mrnumber = {4764526},
zbl = {07893385},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/}
}
TY - JOUR AU - Chen, Min AU - Raspaud, André AU - Wang, Weifan AU - Yu, Weiqiang TI - Partitioning planar graph of girth 5 into two forests with maximum degree 4 JO - Czechoslovak Mathematical Journal PY - 2024 SP - 355 EP - 366 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/ DO - 10.21136/CMJ.2024.0394-21 LA - en ID - 10_21136_CMJ_2024_0394_21 ER -
%0 Journal Article %A Chen, Min %A Raspaud, André %A Wang, Weifan %A Yu, Weiqiang %T Partitioning planar graph of girth 5 into two forests with maximum degree 4 %J Czechoslovak Mathematical Journal %D 2024 %P 355-366 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0394-21/ %R 10.21136/CMJ.2024.0394-21 %G en %F 10_21136_CMJ_2024_0394_21
Chen, Min; Raspaud, André; Wang, Weifan; Yu, Weiqiang. Partitioning planar graph of girth 5 into two forests with maximum degree 4. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 355-366. doi: 10.21136/CMJ.2024.0394-21
[1] Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Ill. J. Math. 21 (1977), 429-490. | DOI | MR | JFM
[2] Appel, K., Haken, W.: Every planar map is four colorable. II. Reducibility. Ill. J. Math. 21 (1977), 491-567. | DOI | MR | JFM
[3] Borodin, O. V.: A proof of Grünbaum's conjecture on the acyclic 5-colorability of planar graphs. Dokl. Akad. Nauk SSSR 231 (1976), 18-20 Russian. | MR | JFM
[4] Borodin, O. V., Glebov, A. N.: On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph. Diskretn. Anal. Issled. Oper., Ser. 1 8 (2001), 34-53 Russian. | MR | JFM
[5] Borodin, O. V., Ivanova, A. O.: Near-proper vertex 2-colorings of sparse graphs. Diskretn. Anal. Issled. Oper. 16 (2009), 16-20 Russian. | MR | JFM
[6] Borodin, O. V., Kostochka, A. V.: Vertex decompositions of sparse graphs into an independent set and a subgraph of maximum degree at most 1. Sib. Math. J. 52 (2011), 796-801. | DOI | MR | JFM
[7] Borodin, O. V., Kostochka, A. V.: Defective 2-colorings of sparse graphs. J. Comb. Theory, Ser. B 104 (2014), 72-80. | DOI | MR | JFM
[8] Chartrand, G., Kronk, H. V.: The point-arboricity of planar graphs. J. Lond. Math. Soc. 44 (1969), 612-616. | DOI | MR | JFM
[9] Chen, M., Raspaud, A., Wang, W.: Vertex-arboricity of planar graphs without intersecting triangles. Eur. J. Comb. 33 (2012), 905-923. | DOI | MR | JFM
[10] Chen, M., Yu, W., Wang, W.: On the vertex partitions of sparse graphs into an independent vertex set and a forest with bounded maximum degree. Appl. Math. Comput. 326 (2018), 117-123. | DOI | MR | JFM
[11] Choi, H., Choi, I., Jeong, J., Suh, G.: $(1, k)$-coloring of graphs with girth at least five on a surface. J. Graph Theory 84 (2017), 521-535. | DOI | MR | JFM
[12] Choi, I., Raspaud, A.: Planar graphs with girth at least 5 are (3,5)-colorable. Discrete Math. 338 (2015), 661-667. | DOI | MR | JFM
[13] Dross, F., Montassier, M., Pinlou, A.: Partitioning a triangle-free planar graph into a forest and a forest of bounded degree. Eur. J. Comb. 66 (2017), 81-94. | DOI | MR | JFM
[14] Feghali, C., Šámal, R.: Decomposing a triangle-free planar graph into a forest and a subcubic forest. Eur. J. Comb. 116 (2024), Article ID 103878, 6 pages. | DOI | MR | JFM
[15] Havet, F., Sereni, J.-S.: Improper choosability of graphs and maximum average degree. J. Graph Theory 52 (2006), 181-199. | DOI | MR | JFM
[16] Kim, J., Kostochka, A., Zhu, X.: Improper coloring of sparse graphs with a given girth. I. (0,1)-colorings of triangle-free graphs. Eur. J. Comb. 42 (2014), 26-48. | DOI | MR | JFM
[17] Montassier, M., Ochem, P.: Near-colorings: Non-colorable graphs and NP-completeness. Electron. J. Comb. 22 (2015), Article ID P1.57, 13 pages. | DOI | MR | JFM
[18] Poh, K. S.: On the linear vertex-arboricity of a planar graph. J. Graph Theory 14 (1990), 73-75. | DOI | MR | JFM
[19] Raspaud, A., Wang, W.: On the vertex-arboricity of planar graphs. Eur. J. Comb. 29 (2008), 1064-1075. | DOI | MR | JFM
[20] Zhang, M., Chen, M., Wang, Y.: A sufficient condition for planar graphs with girth 5 to be (1,7)-colorable. J. Comb. Optim. 33 (2017), 847-865. | DOI | MR | JFM
Cité par Sources :