The covariety of perfect numerical semigroups with fixed Frobenius number
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 697-714
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $S$ be a numerical semigroup. We say that $h\in \mathbb {N} \backslash S$ is an isolated gap of $S$ if $\{h-1,h+1\}\subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by ${\rm m} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\scr {C}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\scr {C},$ the intersection of two elements of $\scr {C}$ is again an element of $\scr {C}$, and $S\backslash \{{\rm m}(S)\}\in \scr {C}$ for all $S\in \scr {C}$ such that $S\neq \min (\scr {C}).$ We prove that the set $\scr {P}(F)=\{S\colon S$ is a perfect numerical semigroup with Frobenius number $F\}$ is a covariety. Also, we describe three algorithms which compute: the set $\scr {P}(F),$ the maximal elements of $\scr {P}(F)$, and the elements of $\scr {P}(F)$ with a given genus. A ${\rm Parf}$-semigroup (or ${\rm Psat}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets ${\rm Parf}(F)=\{S\colon S$ is a ${\rm Parf}$-numerical semigroup with Frobenius number $F\}$ and ${\rm Psat}(F)=\{S\colon S$ is a ${\rm Psat}$-numerical semigroup with Frobenius number $F\}$ are covarieties. As a consequence we present some algorithms to compute ${\rm Parf}(F)$ and ${\rm Psat}(F).$
Let $S$ be a numerical semigroup. We say that $h\in \mathbb {N} \backslash S$ is an isolated gap of $S$ if $\{h-1,h+1\}\subseteq S.$ A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by ${\rm m} (S)$ the multiplicity of a numerical semigroup $S$. A covariety is a nonempty family $\scr {C}$ of numerical semigroups that fulfills the following conditions: there exists the minimum of $\scr {C},$ the intersection of two elements of $\scr {C}$ is again an element of $\scr {C}$, and $S\backslash \{{\rm m}(S)\}\in \scr {C}$ for all $S\in \scr {C}$ such that $S\neq \min (\scr {C}).$ We prove that the set $\scr {P}(F)=\{S\colon S$ is a perfect numerical semigroup with Frobenius number $F\}$ is a covariety. Also, we describe three algorithms which compute: the set $\scr {P}(F),$ the maximal elements of $\scr {P}(F)$, and the elements of $\scr {P}(F)$ with a given genus. A ${\rm Parf}$-semigroup (or ${\rm Psat}$-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets ${\rm Parf}(F)=\{S\colon S$ is a ${\rm Parf}$-numerical semigroup with Frobenius number $F\}$ and ${\rm Psat}(F)=\{S\colon S$ is a ${\rm Psat}$-numerical semigroup with Frobenius number $F\}$ are covarieties. As a consequence we present some algorithms to compute ${\rm Parf}(F)$ and ${\rm Psat}(F).$
DOI : 10.21136/CMJ.2024.0379-23
Classification : 11D07, 13H10, 20M14
Keywords: perfect numerical semigroup; saturated numerical semigroup; Arf numerical semigroup; covariety; Frobenius number; genus; algorithm
@article{10_21136_CMJ_2024_0379_23,
     author = {Moreno-Fr{\'\i}as, Mar{\'\i}a \'Angeles and Rosales, Jos\'e Carlos},
     title = {The covariety of perfect numerical semigroups with fixed {Frobenius} number},
     journal = {Czechoslovak Mathematical Journal},
     pages = {697--714},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0379-23},
     mrnumber = {4804955},
     zbl = {07953673},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0379-23/}
}
TY  - JOUR
AU  - Moreno-Frías, María Ángeles
AU  - Rosales, José Carlos
TI  - The covariety of perfect numerical semigroups with fixed Frobenius number
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 697
EP  - 714
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0379-23/
DO  - 10.21136/CMJ.2024.0379-23
LA  - en
ID  - 10_21136_CMJ_2024_0379_23
ER  - 
%0 Journal Article
%A Moreno-Frías, María Ángeles
%A Rosales, José Carlos
%T The covariety of perfect numerical semigroups with fixed Frobenius number
%J Czechoslovak Mathematical Journal
%D 2024
%P 697-714
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0379-23/
%R 10.21136/CMJ.2024.0379-23
%G en
%F 10_21136_CMJ_2024_0379_23
Moreno-Frías, María Ángeles; Rosales, José Carlos. The covariety of perfect numerical semigroups with fixed Frobenius number. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 697-714. doi: 10.21136/CMJ.2024.0379-23

[1] Apéry, R.: Sur les branches superlinéaires des courbes algébriques. C.R. Acad. Sci., Paris 222 (1946), 1198-1200 French. | MR | JFM

[2] Arf, C.: Une interprétation algébraique de la suite des ordres de multiplicité d'une branche algébrique. Proc. Lond. Math. Soc., II. Ser 50 (1948), 256-287 French. | DOI | MR | JFM

[3] Barucci, V., Dobbs, D. E., Fontana, M.: Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem. Am. Math. Soc. 598 (1997), 78 pages. | DOI | MR | JFM

[4] Campillo, A.: On saturations of curve singularities (any characteristic). Singularities, Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. | DOI | MR | JFM

[5] Delgado, M., García-Sánchez, P. A., Morais, J.: NumericalSgps: A package to compute with numerical semigroups. Available at \brokenlink{ https://www.gap-system.org/Packages/{numericalsgps.html}}, Version 1.3.1 (2022).

[6] Mata, M. Delgado de la, Jiménez, C. A. Núñez: Monomial rings and saturated rings. Géométrie algébrique et applications. I Travaux en Cours 22. Hermann, Paris (1987), 23-34. | MR | JFM

[7] Fröberg, R., Gottlieb, G., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35 (1987), 63-83. | DOI | MR | JFM

[8] Group, GAP: GAP Groups, Algorithms, Programming -- a System for Computational Discrete Algebra. Available at https://www.gap-system.org/, Version 4.12.2 (2022).

[9] Lipman, J.: Stable ideals and Arf rings. Am. J. Math. 93 (1971), 649-685. | DOI | MR | JFM

[10] Moreno-Frías, M. Á., Rosales, J. C.: Perfect numerical semigroups. Turk. J. Math. 43 (2019), 1742-1754. | DOI | MR | JFM

[11] Moreno-Frías, M. Á., Rosales, J. C.: The set of Arf numerical semigroup with given Frobenius number. Turk. J. Math. 47 (2023), 1392-1405. | DOI | MR | JFM

[12] Moreno-Frías, M. Á., Rosales, J. C.: The covariety of saturated numerical semigroup with fixed Frobenius number. Foundations 4, (2024), 249-262. | DOI | MR

[13] Moreno-Frías, M. Á., Rosales, J. C.: The covariety of numerical semigroups with fixed Frobenius number. (to appear) in J. Algebr. Comb. | DOI | MR

[14] Núñez, A.: Algebro-geometric properties of saturated rings. J. Pure Appl. Algebra 59 (1989), 201-214. | DOI | MR | JFM

[15] Pham, F.: Fractions lipschitziennes et saturation de Zariski des algèbres analytiques complexes. Actes du Congrès International des Mathématiciens. Tome 2 Gautier-Villars, Paris (1971), 649-654 French. | MR | JFM

[16] Alfonsín, J. L. Ramírez: Complexity of the Frobenius problem. Combinatorica 16 (1996), 143-147. | DOI | MR | JFM

[17] Alfonsín, J. L. Ramírez: The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and its Applications 30. Oxford University Press, Oxford (2005). | DOI | MR | JFM

[18] Robles-Pérez, A. M., Rosales, J. C.: The enumeration of the set of atomic numerical semigroups with fixed Frobenius number. J. Algebra Appl. 19 (2020), Article ID 2050144, 10 pages. | DOI | MR | JFM

[19] Rosales, J. C., Branco, M. B.: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups. J. Pure Appl. Algebra 171 (2002), 303-314. | DOI | MR | JFM

[20] Rosales, J. C., Branco, M. B.: A problem of integer partitions and numerical semigroups. Proc. R. Soc. Edinb., Sect. A, Math. 149 (2019), 969-978. | DOI | MR | JFM

[21] Rosales, J. C., García-Sánchez, P. A.: Numerical Semigroups. Developments in Mathematics 20. Springer, New York (2009). | DOI | MR | JFM

[22] Sylvester, J. J.: Problem 7382. Mathematical questions, with their solutions, from the Educational Times 41 (1884), page 21. | MR

[23] Zariski, O.: General theory of saturation and of saturated local rings. I. Saturation of complete local domains of dimension one having arbitrary coefficient fields (of characteristic zero). Am. J. Math. 93 (1971), 573-684. | DOI | MR | JFM

[24] Zariski, O.: General theory of saturation and of saturated local rings. II. Saturated local rings of dimension 1. Am. J. Math. 93 (1971), 872-964. | DOI | MR | JFM

[25] Zariski, O.: General theory of saturation and of saturated local rings. III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces. Am. J. Math. 97 (1975), 415-502. | DOI | MR | JFM

Cité par Sources :