Keywords: harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
@article{10_21136_CMJ_2024_0368_23,
author = {Li, Bo and Li, Jinxia and Ma, Bolin and Shen, Tianjun},
title = {On the characterization of harmonic functions with initial data in {Morrey} space},
journal = {Czechoslovak Mathematical Journal},
pages = {461--491},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0368-23},
mrnumber = {4764535},
zbl = {07893394},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/}
}
TY - JOUR AU - Li, Bo AU - Li, Jinxia AU - Ma, Bolin AU - Shen, Tianjun TI - On the characterization of harmonic functions with initial data in Morrey space JO - Czechoslovak Mathematical Journal PY - 2024 SP - 461 EP - 491 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/ DO - 10.21136/CMJ.2024.0368-23 LA - en ID - 10_21136_CMJ_2024_0368_23 ER -
%0 Journal Article %A Li, Bo %A Li, Jinxia %A Ma, Bolin %A Shen, Tianjun %T On the characterization of harmonic functions with initial data in Morrey space %J Czechoslovak Mathematical Journal %D 2024 %P 461-491 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/ %R 10.21136/CMJ.2024.0368-23 %G en %F 10_21136_CMJ_2024_0368_23
Li, Bo; Li, Jinxia; Ma, Bolin; Shen, Tianjun. On the characterization of harmonic functions with initial data in Morrey space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491. doi: 10.21136/CMJ.2024.0368-23
[1] Adams, D. R.: Morrey Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). | DOI | MR | JFM
[2] Adams, D. R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50 (2012), 201-230. | DOI | MR | JFM
[3] Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y.: Generalized Morrey spaces -- revisited. Z. Anal. Anwend. 36 (2017), 17-35. | DOI | MR | JFM
[4] Biroli, M., Mosco, U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 125-181. | DOI | MR | JFM
[5] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17. EMS, Zürich (2011). | DOI | MR | JFM
[6] Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), 137-160 Italian. | MR | JFM
[7] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. | MR | JFM
[8] Coulhon, T., Jiang, R., Koskela, P., Sikora, A.: Gradient estimates for heat kernels and harmonic functions. J. Funct. Anal. 278 (2020), Article ID 108398, 67 pages. | DOI | MR | JFM
[9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). | DOI | MR | JFM
[10] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13 (2007), 87-111. | DOI | MR | JFM
[11] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18 (2005), 943-973. | DOI | MR | JFM
[12] Duong, X. T., Yan, L., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal. 266 (2014), 2053-2085. | DOI | MR | JFM
[13] Eriksson-Bique, S., Giovannardi, G., Korte, R., Shanmugalingam, N., Speight, G.: Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry. J. Differ. Equations 306 (2022), 590-632. | DOI | MR | JFM
[14] Fabes, E. B., Johnson, R. L., Neri, U.: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $L_{p,\lambda}$. Indiana Univ. Math. J. 25 (1976), 159-170. | DOI | MR | JFM
[15] Fabes, E. B., Kenig, C. E., Serapioni, R. P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equations 7 (1982), 77-116. | DOI | MR | JFM
[16] Fabes, E. B., Neri, U.: Characterization of temperatures with initial data in BMO. Duke Math. J. 42 (1975), 725-734. | DOI | MR | JFM
[17] Fabes, E. B., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data. Proc. Am. Math. Soc. 78 (1980), 33-39. | DOI | MR | JFM
[18] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM
[19] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin (1994). | DOI | MR | JFM
[20] Haj{ł}asz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. | DOI | MR | JFM
[21] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015). | DOI | MR | JFM
[22] Huang, J., Li, P., Liu, Y.: Extension of Campanato-Sobolev type spaces associated with Schrödinger operators. Ann. Funct. Anal. 11 (2020), 314-333. | DOI | MR | JFM
[23] Huang, Q., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in Morrey spaces. Taiwanese J. Math. 23 (2019), 1133-1151. | DOI | MR | JFM
[24] Jiang, R.: Gradient estimate for solutions to Poisson equations in metric measure spaces. J. Funct. Anal. 261 (2011), 3549-3584. | DOI | MR | JFM
[25] Jiang, R., Li, B.: Dirichlet problem for the Schrödinger equation with the boundary value in BMO space. Sci. China, Math. 65 (2022), 1431-1468. | DOI | MR | JFM
[26] Jiang, R., Lin, F.: Riesz transform under perturbations via heat kernel regularity. J. Math. Pures Appl. (9) 133 (2020), 39-65. | DOI | MR | JFM
[27] Jiang, R., Xiao, J., Yang, D.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants. Anal. Appl., Singap. 14 (2016), 679-703. | DOI | MR | JFM
[28] Jin, Y., Li, B., Shen, T.: Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces. Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Paper No. 12, 33 pages. | DOI | MR | JFM
[29] Kalita, E. A.: Dual Morrey spaces. Dokl. Math. 58 (1998), 85-87 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 361 1998 447-449. | MR | JFM
[30] Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167 (2008), 575-599. | DOI | MR | JFM
[31] Koskela, P., Yang, D., Zhou, Y.: A characterization of Haj{ł}asz-Sobolev and Triebel- Lizorkin spaces via grand Littlewood-Paley functions. J. Funct. Anal. 258 (2010), 2637-2661. | DOI | MR | JFM
[32] Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011), 3579-3621. | DOI | MR | JFM
[33] Li, B., Li, J., Lin, Q., Ma, B., Shen, T.: A revisit to ``On BMO and Carleson measures on Riemannian manifolds''. (to appear) in Proc. R. Soc. Edinb., Sect. A, Math. | DOI
[34] Li, B., Ma, B., Shen, T., Wu, X., Zhang, C.: On the caloric functions with BMO traces and their limiting behaviors. J. Geom. Anal. 33 (2023), Article ID 215, 42 pages. | DOI | MR | JFM
[35] Li, B., Shen, T., Tan, J., Wang, A.: On the Dirichlet problem for the Schrödinger equation in the upper half-space. Anal. Math. Phys. 13 (2023), Article ID 85, 31 pages. | DOI | MR | JFM
[36] Li, H-Q.: Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents. J. Funct. Anal. 161 (1999), 152-218 French. | DOI | MR | JFM
[37] Lin, C.-C., Liu, H.: $BMO_L(\Bbb{H}^n)$ spaces and Carleson measures for Schrödinger operators. Adv. Math. 228 (2011), 1631-1688. | DOI | MR | JFM
[38] Liu, Y., Yuan, W.: Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces. Czech. Math. J. 67 (2017), 715-732. | DOI | MR | JFM
[39] Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M.: The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO. Anal. PDE 12 (2019), 605-720. | DOI | MR | JFM
[40] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. | DOI | MR | JFM
[41] C. B. Morrey, Jr.: Multiple integral problems in the calculus of variations and related topics. Univ. California Publ. Math. (N.S.) 1 (1943), 1-130. | MR | JFM
[42] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM
[43] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103. | DOI | MR | JFM
[44] Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176 (2006), 1-19. | DOI | MR | JFM
[45] Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China, Math. 60 (2017), 2219-2240. | DOI | MR | JFM
[46] Peetre, J.: On the theory of $\mathcal{L}_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. | DOI | MR | JFM
[47] Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Am. J. Math. 125 (2003), 1079-1115. | DOI | MR | JFM
[48] Song, L., Tian, X. X., Yan, L. X.: On characterization of Poisson integrals of Schrödinger operators with Morrey traces. Acta Math. Sin., Engl. Ser. 34 (2018), 787-800. | DOI | MR | JFM
[49] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). | MR | JFM
[50] Sturm, K. T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl., IX. Sér. 75 (1996), 273-297. | MR | JFM
[51] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces. Czech. Math. J. 69 (2019), 1029-1037. | DOI | MR | JFM
[52] Wang, Y., Xiao, J.: Homogeneous Campanato-Sobolev classes. Appl. Comput. Harmon. Anal. 39 (2015), 214-247. | DOI | MR | JFM
[53] Yan, L., Yang, D.: New Sobolev spaces via generalized Poincaré inequalities on metric measure spaces. Math. Z. 255 (2007), 133-159. | DOI | MR | JFM
[54] Yang, D., Yang, D., Zhou, Y.: Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math. J. 198 (2010), 77-119. | DOI | MR | JFM
[55] Yang, M., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces. Math. Nachr. 294 (2021), 2021-2044. | DOI | MR | JFM
[56] Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces. Sci. China, Math. 58 (2015), 1835-1908. | DOI | MR | JFM
[57] Zorko, C. T.: Morrey space. Proc. Am. Math. Soc. 98 (1986), 586-592. | DOI | MR | JFM
Cité par Sources :