On the characterization of harmonic functions with initial data in Morrey space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
DOI :
10.21136/CMJ.2024.0368-23
Classification :
35J25, 42B35, 43A85
Keywords: harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
Keywords: harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
@article{10_21136_CMJ_2024_0368_23,
author = {Li, Bo and Li, Jinxia and Ma, Bolin and Shen, Tianjun},
title = {On the characterization of harmonic functions with initial data in {Morrey} space},
journal = {Czechoslovak Mathematical Journal},
pages = {461--491},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0368-23},
mrnumber = {4764535},
zbl = {07893394},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/}
}
TY - JOUR AU - Li, Bo AU - Li, Jinxia AU - Ma, Bolin AU - Shen, Tianjun TI - On the characterization of harmonic functions with initial data in Morrey space JO - Czechoslovak Mathematical Journal PY - 2024 SP - 461 EP - 491 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/ DO - 10.21136/CMJ.2024.0368-23 LA - en ID - 10_21136_CMJ_2024_0368_23 ER -
%0 Journal Article %A Li, Bo %A Li, Jinxia %A Ma, Bolin %A Shen, Tianjun %T On the characterization of harmonic functions with initial data in Morrey space %J Czechoslovak Mathematical Journal %D 2024 %P 461-491 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/ %R 10.21136/CMJ.2024.0368-23 %G en %F 10_21136_CMJ_2024_0368_23
Li, Bo; Li, Jinxia; Ma, Bolin; Shen, Tianjun. On the characterization of harmonic functions with initial data in Morrey space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491. doi: 10.21136/CMJ.2024.0368-23
Cité par Sources :