On the characterization of harmonic functions with initial data in Morrey space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
DOI : 10.21136/CMJ.2024.0368-23
Classification : 35J25, 42B35, 43A85
Keywords: harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
@article{10_21136_CMJ_2024_0368_23,
     author = {Li, Bo and Li, Jinxia and Ma, Bolin and Shen, Tianjun},
     title = {On the characterization of harmonic functions with initial data in {Morrey} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {461--491},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0368-23},
     mrnumber = {4764535},
     zbl = {07893394},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/}
}
TY  - JOUR
AU  - Li, Bo
AU  - Li, Jinxia
AU  - Ma, Bolin
AU  - Shen, Tianjun
TI  - On the characterization of harmonic functions with initial data in Morrey space
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 461
EP  - 491
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/
DO  - 10.21136/CMJ.2024.0368-23
LA  - en
ID  - 10_21136_CMJ_2024_0368_23
ER  - 
%0 Journal Article
%A Li, Bo
%A Li, Jinxia
%A Ma, Bolin
%A Shen, Tianjun
%T On the characterization of harmonic functions with initial data in Morrey space
%J Czechoslovak Mathematical Journal
%D 2024
%P 461-491
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/
%R 10.21136/CMJ.2024.0368-23
%G en
%F 10_21136_CMJ_2024_0368_23
Li, Bo; Li, Jinxia; Ma, Bolin; Shen, Tianjun. On the characterization of harmonic functions with initial data in Morrey space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491. doi: 10.21136/CMJ.2024.0368-23

Cité par Sources :