On the characterization of harmonic functions with initial data in Morrey space
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an \hbox {$\alpha $-Carleson} condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
DOI : 10.21136/CMJ.2024.0368-23
Classification : 35J25, 42B35, 43A85
Keywords: harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
@article{10_21136_CMJ_2024_0368_23,
     author = {Li, Bo and Li, Jinxia and Ma, Bolin and Shen, Tianjun},
     title = {On the characterization of harmonic functions with initial data in {Morrey} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {461--491},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0368-23},
     mrnumber = {4764535},
     zbl = {07893394},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/}
}
TY  - JOUR
AU  - Li, Bo
AU  - Li, Jinxia
AU  - Ma, Bolin
AU  - Shen, Tianjun
TI  - On the characterization of harmonic functions with initial data in Morrey space
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 461
EP  - 491
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/
DO  - 10.21136/CMJ.2024.0368-23
LA  - en
ID  - 10_21136_CMJ_2024_0368_23
ER  - 
%0 Journal Article
%A Li, Bo
%A Li, Jinxia
%A Ma, Bolin
%A Shen, Tianjun
%T On the characterization of harmonic functions with initial data in Morrey space
%J Czechoslovak Mathematical Journal
%D 2024
%P 461-491
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0368-23/
%R 10.21136/CMJ.2024.0368-23
%G en
%F 10_21136_CMJ_2024_0368_23
Li, Bo; Li, Jinxia; Ma, Bolin; Shen, Tianjun. On the characterization of harmonic functions with initial data in Morrey space. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 461-491. doi: 10.21136/CMJ.2024.0368-23

[1] Adams, D. R.: Morrey Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). | DOI | MR | JFM

[2] Adams, D. R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50 (2012), 201-230. | DOI | MR | JFM

[3] Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y.: Generalized Morrey spaces -- revisited. Z. Anal. Anwend. 36 (2017), 17-35. | DOI | MR | JFM

[4] Biroli, M., Mosco, U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 125-181. | DOI | MR | JFM

[5] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17. EMS, Zürich (2011). | DOI | MR | JFM

[6] Campanato, S.: Proprietà di una famiglia di spazi funzionali. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), 137-160 Italian. | MR | JFM

[7] Chiarenza, F., Frasca, M.: Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. | MR | JFM

[8] Coulhon, T., Jiang, R., Koskela, P., Sikora, A.: Gradient estimates for heat kernels and harmonic functions. J. Funct. Anal. 278 (2020), Article ID 108398, 67 pages. | DOI | MR | JFM

[9] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). | DOI | MR | JFM

[10] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13 (2007), 87-111. | DOI | MR | JFM

[11] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18 (2005), 943-973. | DOI | MR | JFM

[12] Duong, X. T., Yan, L., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal. 266 (2014), 2053-2085. | DOI | MR | JFM

[13] Eriksson-Bique, S., Giovannardi, G., Korte, R., Shanmugalingam, N., Speight, G.: Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry. J. Differ. Equations 306 (2022), 590-632. | DOI | MR | JFM

[14] Fabes, E. B., Johnson, R. L., Neri, U.: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and $L_{p,\lambda}$. Indiana Univ. Math. J. 25 (1976), 159-170. | DOI | MR | JFM

[15] Fabes, E. B., Kenig, C. E., Serapioni, R. P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equations 7 (1982), 77-116. | DOI | MR | JFM

[16] Fabes, E. B., Neri, U.: Characterization of temperatures with initial data in BMO. Duke Math. J. 42 (1975), 725-734. | DOI | MR | JFM

[17] Fabes, E. B., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data. Proc. Am. Math. Soc. 78 (1980), 33-39. | DOI | MR | JFM

[18] Fefferman, C. L., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. | DOI | MR | JFM

[19] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin (1994). | DOI | MR | JFM

[20] Haj{ł}asz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415. | DOI | MR | JFM

[21] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015). | DOI | MR | JFM

[22] Huang, J., Li, P., Liu, Y.: Extension of Campanato-Sobolev type spaces associated with Schrödinger operators. Ann. Funct. Anal. 11 (2020), 314-333. | DOI | MR | JFM

[23] Huang, Q., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in Morrey spaces. Taiwanese J. Math. 23 (2019), 1133-1151. | DOI | MR | JFM

[24] Jiang, R.: Gradient estimate for solutions to Poisson equations in metric measure spaces. J. Funct. Anal. 261 (2011), 3549-3584. | DOI | MR | JFM

[25] Jiang, R., Li, B.: Dirichlet problem for the Schrödinger equation with the boundary value in BMO space. Sci. China, Math. 65 (2022), 1431-1468. | DOI | MR | JFM

[26] Jiang, R., Lin, F.: Riesz transform under perturbations via heat kernel regularity. J. Math. Pures Appl. (9) 133 (2020), 39-65. | DOI | MR | JFM

[27] Jiang, R., Xiao, J., Yang, D.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants. Anal. Appl., Singap. 14 (2016), 679-703. | DOI | MR | JFM

[28] Jin, Y., Li, B., Shen, T.: Harmonic functions with BMO traces and their limiting behaviors on metric measure spaces. Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Paper No. 12, 33 pages. | DOI | MR | JFM

[29] Kalita, E. A.: Dual Morrey spaces. Dokl. Math. 58 (1998), 85-87 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 361 1998 447-449. | MR | JFM

[30] Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. (2) 167 (2008), 575-599. | DOI | MR | JFM

[31] Koskela, P., Yang, D., Zhou, Y.: A characterization of Haj{ł}asz-Sobolev and Triebel- Lizorkin spaces via grand Littlewood-Paley functions. J. Funct. Anal. 258 (2010), 2637-2661. | DOI | MR | JFM

[32] Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings. Adv. Math. 226 (2011), 3579-3621. | DOI | MR | JFM

[33] Li, B., Li, J., Lin, Q., Ma, B., Shen, T.: A revisit to ``On BMO and Carleson measures on Riemannian manifolds''. (to appear) in Proc. R. Soc. Edinb., Sect. A, Math. | DOI

[34] Li, B., Ma, B., Shen, T., Wu, X., Zhang, C.: On the caloric functions with BMO traces and their limiting behaviors. J. Geom. Anal. 33 (2023), Article ID 215, 42 pages. | DOI | MR | JFM

[35] Li, B., Shen, T., Tan, J., Wang, A.: On the Dirichlet problem for the Schrödinger equation in the upper half-space. Anal. Math. Phys. 13 (2023), Article ID 85, 31 pages. | DOI | MR | JFM

[36] Li, H-Q.: Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents. J. Funct. Anal. 161 (1999), 152-218 French. | DOI | MR | JFM

[37] Lin, C.-C., Liu, H.: $BMO_L(\Bbb{H}^n)$ spaces and Carleson measures for Schrödinger operators. Adv. Math. 228 (2011), 1631-1688. | DOI | MR | JFM

[38] Liu, Y., Yuan, W.: Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces. Czech. Math. J. 67 (2017), 715-732. | DOI | MR | JFM

[39] Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M.: The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO. Anal. PDE 12 (2019), 605-720. | DOI | MR | JFM

[40] Mizuhara, T.: Boundedness of some classical operators on generalized Morrey spaces. Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. | DOI | MR | JFM

[41] C. B. Morrey, Jr.: Multiple integral problems in the calculus of variations and related topics. Univ. California Publ. Math. (N.S.) 1 (1943), 1-130. | MR | JFM

[42] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972), 207-226. | DOI | MR | JFM

[43] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103. | DOI | MR | JFM

[44] Nakai, E.: The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Stud. Math. 176 (2006), 1-19. | DOI | MR | JFM

[45] Nakai, E.: Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition. Sci. China, Math. 60 (2017), 2219-2240. | DOI | MR | JFM

[46] Peetre, J.: On the theory of $\mathcal{L}_{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. | DOI | MR | JFM

[47] Shen, Z.: Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains. Am. J. Math. 125 (2003), 1079-1115. | DOI | MR | JFM

[48] Song, L., Tian, X. X., Yan, L. X.: On characterization of Poisson integrals of Schrödinger operators with Morrey traces. Acta Math. Sin., Engl. Ser. 34 (2018), 787-800. | DOI | MR | JFM

[49] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). | MR | JFM

[50] Sturm, K. T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl., IX. Sér. 75 (1996), 273-297. | MR | JFM

[51] Wang, D.: Notes on commutator on the variable exponent Lebesgue spaces. Czech. Math. J. 69 (2019), 1029-1037. | DOI | MR | JFM

[52] Wang, Y., Xiao, J.: Homogeneous Campanato-Sobolev classes. Appl. Comput. Harmon. Anal. 39 (2015), 214-247. | DOI | MR | JFM

[53] Yan, L., Yang, D.: New Sobolev spaces via generalized Poincaré inequalities on metric measure spaces. Math. Z. 255 (2007), 133-159. | DOI | MR | JFM

[54] Yang, D., Yang, D., Zhou, Y.: Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators. Nagoya Math. J. 198 (2010), 77-119. | DOI | MR | JFM

[55] Yang, M., Zhang, C.: Characterization of temperatures associated to Schrödinger operators with initial data in BMO spaces. Math. Nachr. 294 (2021), 2021-2044. | DOI | MR | JFM

[56] Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey-Campanato and related smoothness spaces. Sci. China, Math. 58 (2015), 1835-1908. | DOI | MR | JFM

[57] Zorko, C. T.: Morrey space. Proc. Am. Math. Soc. 98 (1986), 586-592. | DOI | MR | JFM

Cité par Sources :