Lipschitz constants for a hyperbolic type metric under Möbius transformations
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
DOI : 10.21136/CMJ.2024.0366-23
Classification : 30C65, 51M10
Keywords: Lipschitz constant; hyperbolic type metric; Möbius transformation
@article{10_21136_CMJ_2024_0366_23,
     author = {Wu, Yinping and Wang, Gendi and Jia, Gaili and Zhang, Xiaohui},
     title = {Lipschitz constants for a hyperbolic type metric under {M\"obius} transformations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--460},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0366-23},
     mrnumber = {4764534},
     zbl = {07893393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/}
}
TY  - JOUR
AU  - Wu, Yinping
AU  - Wang, Gendi
AU  - Jia, Gaili
AU  - Zhang, Xiaohui
TI  - Lipschitz constants for a hyperbolic type metric under Möbius transformations
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 445
EP  - 460
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/
DO  - 10.21136/CMJ.2024.0366-23
LA  - en
ID  - 10_21136_CMJ_2024_0366_23
ER  - 
%0 Journal Article
%A Wu, Yinping
%A Wang, Gendi
%A Jia, Gaili
%A Zhang, Xiaohui
%T Lipschitz constants for a hyperbolic type metric under Möbius transformations
%J Czechoslovak Mathematical Journal
%D 2024
%P 445-460
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/
%R 10.21136/CMJ.2024.0366-23
%G en
%F 10_21136_CMJ_2024_0366_23
Wu, Yinping; Wang, Gendi; Jia, Gaili; Zhang, Xiaohui. Lipschitz constants for a hyperbolic type metric under Möbius transformations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460. doi: 10.21136/CMJ.2024.0366-23

[1] Ahlfors, L. V.: Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing, Providence (2010). | DOI | MR | JFM

[2] Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997). | MR | JFM

[3] Beardon, A. F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics 91. Springer, New York (1983). | DOI | MR | JFM

[4] Beardon, A. F., Minda, D.: The hyperbolic metric and geometric function theory. Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56. | MR | JFM

[5] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal mappings. Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. | DOI | MR | JFM

[6] Dovgoshey, O., Hariri, P., Vuorinen, M.: Comparison theorems for hyperbolic type metrics. Complex Var. Elliptic Equ. 61 (2016), 1464-1480. | DOI | MR | JFM

[7] Gehring, F. W., Hag, K.: The Apollonian metric and quasiconformal mappings. Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163). | DOI | MR | JFM

[8] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk. Mathematical Surveys and Monographs 184. AMS, Providence (2012). | DOI | MR | JFM

[9] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979), 50-74. | DOI | MR | JFM

[10] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains. J. Anal. Math. 30 (1976), 172-199. | DOI | MR | JFM

[11] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham (2020). | DOI | MR | JFM

[12] Hariri, P., Vuorinen, M., Wang, G.: Some remarks on the visual angle metric. Comput. Methods Funct. Theory 16 (2016), 187-201. | DOI | MR | JFM

[13] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47 (2017), 1121-1148. | DOI | MR | JFM

[14] Hästö, P. A.: A new weighted metric: The relative metric. I. J. Math. Anal. Appl. 274 (2002), 38-58. | DOI | MR | JFM

[15] Ibragimov, Z., Mohapatra, M. R., Sahoo, S. K., Zhang, X.: Geometry of the Cassinian metric and its inner metric. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372. | DOI | MR | JFM

[16] Jia, G., Wang, G., Zhang, X.: Geometric properties of the triangular ratio metric and related metrics. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237. | DOI | MR | JFM

[17] Klén, R., Lindén, H., Vuorinen, M., Wang, G.: The visual angle metric and Möbius transformations. Comput. Methods Funct. Theory 14 (2014), 577-608. | DOI | MR | JFM

[18] Klén, R., Mohapatra, M. R., Sahoo, S. K.: Geometric properties of the Cassinian metric. Math. Nachr. 290 (2017), 1531-1543. | DOI | MR | JFM

[19] Mocanu, M.: Functional inequalities for metric-preserving functions with respect to intrinsic metrics of hyperbolic type. Symmetry 13 (2021), Article ID 2072, 21 pages. | DOI

[20] Mohapatra, M. R., Sahoo, S. K.: A Gromov hyperbolic metric vs the hyperbolic and other related metrics. Comput. Methods Funct. Theory 18 (2018), 473-493. | DOI | MR | JFM

[21] Nikolov, N., Andreev, L.: Estimates of the Kobayashi and quasi-hyperbolic distances. Ann. Mat. Pura Appl. (4) 196 (2017), 43-50. | DOI | MR | JFM

[22] Ratcliffe, J. G.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics 149. Springer, New York (2006). | DOI | MR | JFM

[23] Simić, S., Vuorinen, M., Wang, G.: Sharp Lipschitz constants for the distance ratio metric. Math. Scand. 116 (2015), 86-103. | DOI | MR | JFM

[24] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer, Berlin (1988). | DOI | MR | JFM

[25] Wang, G., Xu, X., Vuorinen, M.: Remarks on the scale-invariant Cassinian metric. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577. | DOI | MR | JFM

[26] Xu, X., Wang, G., Zhang, X.: Comparison and Möbius quasi-invariance properties of Ibragimov's metric. Comput. Methods Funct. Theory 22 (2022), 609-627. | DOI | MR | JFM

Cité par Sources :