Lipschitz constants for a hyperbolic type metric under Möbius transformations
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
DOI : 10.21136/CMJ.2024.0366-23
Classification : 30C65, 51M10
Keywords: Lipschitz constant; hyperbolic type metric; Möbius transformation
@article{10_21136_CMJ_2024_0366_23,
     author = {Wu, Yinping and Wang, Gendi and Jia, Gaili and Zhang, Xiaohui},
     title = {Lipschitz constants for a hyperbolic type metric under {M\"obius} transformations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--460},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0366-23},
     mrnumber = {4764534},
     zbl = {07893393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/}
}
TY  - JOUR
AU  - Wu, Yinping
AU  - Wang, Gendi
AU  - Jia, Gaili
AU  - Zhang, Xiaohui
TI  - Lipschitz constants for a hyperbolic type metric under Möbius transformations
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 445
EP  - 460
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/
DO  - 10.21136/CMJ.2024.0366-23
LA  - en
ID  - 10_21136_CMJ_2024_0366_23
ER  - 
%0 Journal Article
%A Wu, Yinping
%A Wang, Gendi
%A Jia, Gaili
%A Zhang, Xiaohui
%T Lipschitz constants for a hyperbolic type metric under Möbius transformations
%J Czechoslovak Mathematical Journal
%D 2024
%P 445-460
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/
%R 10.21136/CMJ.2024.0366-23
%G en
%F 10_21136_CMJ_2024_0366_23
Wu, Yinping; Wang, Gendi; Jia, Gaili; Zhang, Xiaohui. Lipschitz constants for a hyperbolic type metric under Möbius transformations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460. doi: 10.21136/CMJ.2024.0366-23

Cité par Sources :