Lipschitz constants for a hyperbolic type metric under Möbius transformations
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
DOI :
10.21136/CMJ.2024.0366-23
Classification :
30C65, 51M10
Keywords: Lipschitz constant; hyperbolic type metric; Möbius transformation
Keywords: Lipschitz constant; hyperbolic type metric; Möbius transformation
@article{10_21136_CMJ_2024_0366_23,
author = {Wu, Yinping and Wang, Gendi and Jia, Gaili and Zhang, Xiaohui},
title = {Lipschitz constants for a hyperbolic type metric under {M\"obius} transformations},
journal = {Czechoslovak Mathematical Journal},
pages = {445--460},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0366-23},
mrnumber = {4764534},
zbl = {07893393},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/}
}
TY - JOUR AU - Wu, Yinping AU - Wang, Gendi AU - Jia, Gaili AU - Zhang, Xiaohui TI - Lipschitz constants for a hyperbolic type metric under Möbius transformations JO - Czechoslovak Mathematical Journal PY - 2024 SP - 445 EP - 460 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/ DO - 10.21136/CMJ.2024.0366-23 LA - en ID - 10_21136_CMJ_2024_0366_23 ER -
%0 Journal Article %A Wu, Yinping %A Wang, Gendi %A Jia, Gaili %A Zhang, Xiaohui %T Lipschitz constants for a hyperbolic type metric under Möbius transformations %J Czechoslovak Mathematical Journal %D 2024 %P 445-460 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0366-23/ %R 10.21136/CMJ.2024.0366-23 %G en %F 10_21136_CMJ_2024_0366_23
Wu, Yinping; Wang, Gendi; Jia, Gaili; Zhang, Xiaohui. Lipschitz constants for a hyperbolic type metric under Möbius transformations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 445-460. doi: 10.21136/CMJ.2024.0366-23
Cité par Sources :