On a sum involving the integral part function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
DOI : 10.21136/CMJ.2024.0360-23
Classification : 11L07, 11N37
Keywords: asymptotical formula; exponential sum; exponential pair; integral part
@article{10_21136_CMJ_2024_0360_23,
     author = {Chen, Bo},
     title = {On a sum involving the integral part function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {437--444},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0360-23},
     mrnumber = {4764533},
     zbl = {07893392},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/}
}
TY  - JOUR
AU  - Chen, Bo
TI  - On a sum involving the integral part function
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 437
EP  - 444
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/
DO  - 10.21136/CMJ.2024.0360-23
LA  - en
ID  - 10_21136_CMJ_2024_0360_23
ER  - 
%0 Journal Article
%A Chen, Bo
%T On a sum involving the integral part function
%J Czechoslovak Mathematical Journal
%D 2024
%P 437-444
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/
%R 10.21136/CMJ.2024.0360-23
%G en
%F 10_21136_CMJ_2024_0360_23
Chen, Bo. On a sum involving the integral part function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444. doi: 10.21136/CMJ.2024.0360-23

Cité par Sources :