On a sum involving the integral part function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
DOI : 10.21136/CMJ.2024.0360-23
Classification : 11L07, 11N37
Keywords: asymptotical formula; exponential sum; exponential pair; integral part
@article{10_21136_CMJ_2024_0360_23,
     author = {Chen, Bo},
     title = {On a sum involving the integral part function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {437--444},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0360-23},
     mrnumber = {4764533},
     zbl = {07893392},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/}
}
TY  - JOUR
AU  - Chen, Bo
TI  - On a sum involving the integral part function
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 437
EP  - 444
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/
DO  - 10.21136/CMJ.2024.0360-23
LA  - en
ID  - 10_21136_CMJ_2024_0360_23
ER  - 
%0 Journal Article
%A Chen, Bo
%T On a sum involving the integral part function
%J Czechoslovak Mathematical Journal
%D 2024
%P 437-444
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/
%R 10.21136/CMJ.2024.0360-23
%G en
%F 10_21136_CMJ_2024_0360_23
Chen, Bo. On a sum involving the integral part function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444. doi: 10.21136/CMJ.2024.0360-23

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM

[2] Bordellès, O.: Arithmetic Tales. Universitext. Springer, London (2012). | DOI | MR | JFM

[3] Bordellès, O., Dai, L., Heyman, R., Pan, H., Shparlinski, I. E.: On a sum involving the Euler function. J. Number Theory 202 (2019), 278-297. | DOI | MR | JFM

[4] Graham, S. W., Kolesnik, G.: Van der Corput's Method for Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). | DOI | MR | JFM

[5] Liu, K., Wu, J., Yang, Z.: A variant of the prime number theorem. Indag. Math., New Ser. 33 (2022), 388-396. | DOI | MR | JFM

[6] Ma, J., Sun, H.: On a sum involving the divisor function. Period. Math. Hung. 83 (2021), 185-191. | DOI | MR | JFM

[7] Ma, J., Wu, J.: On a sum involving the Mangoldt function. Period. Math. Hung. 83 (2021), 39-48. | DOI | MR | JFM

[8] Mercier, A., Nowak, W. G.: On the asymptotic behaviour of sums $\sum g\left(n\right)\{x/n\}^k$. Monatsh. Math. 99 (1985), 213-221. | DOI | MR | JFM

[9] Stucky, J.: The fractional sum of small arithmetic functions. J. Number Theory 238 (2022), 731-739. | DOI | MR | JFM

[10] Wu, J.: Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski. Period. Math. Hung. 80 (2020), 95-102. | DOI | MR | JFM

[11] Zhai, W.: On a sum involving the Euler function. J. Number Theory 211 (2020), 199-219. | DOI | MR | JFM

Cité par Sources :