On a sum involving the integral part function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
DOI :
10.21136/CMJ.2024.0360-23
Classification :
11L07, 11N37
Keywords: asymptotical formula; exponential sum; exponential pair; integral part
Keywords: asymptotical formula; exponential sum; exponential pair; integral part
@article{10_21136_CMJ_2024_0360_23,
author = {Chen, Bo},
title = {On a sum involving the integral part function},
journal = {Czechoslovak Mathematical Journal},
pages = {437--444},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0360-23},
mrnumber = {4764533},
zbl = {07893392},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0360-23/}
}
Chen, Bo. On a sum involving the integral part function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 437-444. doi: 10.21136/CMJ.2024.0360-23
Cité par Sources :