Keywords: ideal class group; biquadratic field
@article{10_21136_CMJ_2024_0356_23,
author = {Ram, Mahesh Kumar},
title = {Class groups of large ranks in biquadratic fields},
journal = {Czechoslovak Mathematical Journal},
pages = {429--436},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0356-23},
mrnumber = {4764532},
zbl = {07893391},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0356-23/}
}
TY - JOUR AU - Ram, Mahesh Kumar TI - Class groups of large ranks in biquadratic fields JO - Czechoslovak Mathematical Journal PY - 2024 SP - 429 EP - 436 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0356-23/ DO - 10.21136/CMJ.2024.0356-23 LA - en ID - 10_21136_CMJ_2024_0356_23 ER -
Ram, Mahesh Kumar. Class groups of large ranks in biquadratic fields. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 429-436. doi: 10.21136/CMJ.2024.0356-23
[1] Ankeny, N. C., Chowla, S.: On the divisibility of the class number of quadratic fields. Pac. J. Math. 5 (1955), 321-324. | DOI | MR | JFM
[2] Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185 (2018), 339-348. | DOI | MR | JFM
[3] H. Cohen, H. W. Lenstra, Jr.: Heuristics on class groups of number fields. Number Theory Lecture Notes in Mathematics 1068. Springer, Berlin (1984), 33-62. | DOI | MR | JFM
[4] Cohen, H., Martinet, J.: Heuristic study of the class groups of number fields. J. Reine Angew. Math. 404 (1990), 39-76 French. | DOI | MR | JFM
[5] Gillibert, J., Gillibert, P.: Galois covers of $\Bbb{P}^1$ and number fields with large class groups. Int. J. Number Theory 18 (2022), 1261-1288. | DOI | MR | JFM
[6] Gillibert, J., Levin, A.: A geometric approach to large class groups: A survey. Class Groups of Number Fields and Related Topics Springer, Singapore (2020), 1-15. | DOI | MR | JFM
[7] Ichimura, H.: Note on the class numbers of certain real quadratic fields. Abh. Math. Sem. Univ. Hamb. 73 (2003), 281-288. | DOI | MR | JFM
[8] Louboutin, S. R.: On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 137 (2009), 4025-4028. | DOI | MR | JFM
[9] Mishra, M., Schoof, R., Washington, L. C.: Class groups of real cyclotomic fields. Monatsh. Math. 195 (2021), 489-496. | DOI | MR | JFM
[10] Murty, M. R.: Exponents of class groups of quadratic fields. Topics in Number Theory Mathematics and its Applications 467. Kluwer Academic, Dordrecht (1999), 229-239. | DOI | MR | JFM
[11] Nagell, T.: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03. | DOI | MR
[12] Nakano, S.: On ideal class groups of algebraic number fields. J. Reine Angew. Math. 358 (1985), 61-75. | DOI | MR | JFM
[13] Schoof, R. J.: Class group of complex quadratic fields. Math. Comput. 41 (1983), 295-302. | DOI | MR | JFM
[14] Silverman, J. H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer, Dordrecht (2009). | DOI | MR | JFM
[15] Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. | DOI | MR | JFM
Cité par Sources :