On certain $GL(6)$ form and its Rankin-Selberg convolution
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 415-427 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
DOI : 10.21136/CMJ.2024.0355-23
Classification : 11F12, 11F30, 11N75
Keywords: Maass form; automorphic form; Rankin-Selberg convolution
@article{10_21136_CMJ_2024_0355_23,
     author = {Kaur, Amrinder and Sankaranarayanan, Ayyadurai},
     title = {On certain $GL(6)$ form and its {Rankin-Selberg} convolution},
     journal = {Czechoslovak Mathematical Journal},
     pages = {415--427},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0355-23},
     mrnumber = {4764531},
     zbl = {07893390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/}
}
TY  - JOUR
AU  - Kaur, Amrinder
AU  - Sankaranarayanan, Ayyadurai
TI  - On certain $GL(6)$ form and its Rankin-Selberg convolution
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 415
EP  - 427
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/
DO  - 10.21136/CMJ.2024.0355-23
LA  - en
ID  - 10_21136_CMJ_2024_0355_23
ER  - 
%0 Journal Article
%A Kaur, Amrinder
%A Sankaranarayanan, Ayyadurai
%T On certain $GL(6)$ form and its Rankin-Selberg convolution
%J Czechoslovak Mathematical Journal
%D 2024
%P 415-427
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/
%R 10.21136/CMJ.2024.0355-23
%G en
%F 10_21136_CMJ_2024_0355_23
Kaur, Amrinder; Sankaranarayanan, Ayyadurai. On certain $GL(6)$ form and its Rankin-Selberg convolution. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 415-427. doi: 10.21136/CMJ.2024.0355-23

Cité par Sources :