On certain $GL(6)$ form and its Rankin-Selberg convolution
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 415-427
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$.
DOI : 10.21136/CMJ.2024.0355-23
Classification : 11F12, 11F30, 11N75
Keywords: Maass form; automorphic form; Rankin-Selberg convolution
@article{10_21136_CMJ_2024_0355_23,
     author = {Kaur, Amrinder and Sankaranarayanan, Ayyadurai},
     title = {On certain $GL(6)$ form and its {Rankin-Selberg} convolution},
     journal = {Czechoslovak Mathematical Journal},
     pages = {415--427},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0355-23},
     mrnumber = {4764531},
     zbl = {07893390},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/}
}
TY  - JOUR
AU  - Kaur, Amrinder
AU  - Sankaranarayanan, Ayyadurai
TI  - On certain $GL(6)$ form and its Rankin-Selberg convolution
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 415
EP  - 427
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/
DO  - 10.21136/CMJ.2024.0355-23
LA  - en
ID  - 10_21136_CMJ_2024_0355_23
ER  - 
%0 Journal Article
%A Kaur, Amrinder
%A Sankaranarayanan, Ayyadurai
%T On certain $GL(6)$ form and its Rankin-Selberg convolution
%J Czechoslovak Mathematical Journal
%D 2024
%P 415-427
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/
%R 10.21136/CMJ.2024.0355-23
%G en
%F 10_21136_CMJ_2024_0355_23
Kaur, Amrinder; Sankaranarayanan, Ayyadurai. On certain $GL(6)$ form and its Rankin-Selberg convolution. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 415-427. doi: 10.21136/CMJ.2024.0355-23

[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM

[2] Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. | DOI | MR | JFM

[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n,\Bbb{R})$. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[4] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math. 29 (1978), 443-462. | DOI | MR | JFM

[5] Kim, H. H.: Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$. J. Am. Math. Soc. 16 (2003), 139-183. | DOI | MR | JFM

[6] Kim, H. H., Shahidi, F.: Functorial products for GL$_2 \times \rm {GL}_3$ and the symmetric cube for GL$_2$. Ann. Math. (2) 155 (2002), 837-893. | DOI | MR | JFM

[7] Langlands, R. P.: Problems in the theory of automorphic forms. Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. | DOI | MR | JFM

[8] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM

[9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 153 (2022), 11453-11470. | DOI | MR | JFM

[10] Meurman, T.: On the order of the Maass $L$-function on the critical line. Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. | MR | JFM

[11] Nelson, P. D.: Bounds for standard $L$-functions. Available at {\def\let \relax \brokenlink{ , 237 pages. | arXiv | DOI

[12] Perelli, A.: General $L$-functions. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. | DOI | MR | JFM

[13] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I. Proc. Camb. Philos. Soc. 35 (1939), 351-356. | DOI | MR | JFM

[14] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50 German. | MR | JFM

Cité par Sources :