Keywords: Maass form; automorphic form; Rankin-Selberg convolution
@article{10_21136_CMJ_2024_0355_23,
author = {Kaur, Amrinder and Sankaranarayanan, Ayyadurai},
title = {On certain $GL(6)$ form and its {Rankin-Selberg} convolution},
journal = {Czechoslovak Mathematical Journal},
pages = {415--427},
year = {2024},
volume = {74},
number = {2},
doi = {10.21136/CMJ.2024.0355-23},
mrnumber = {4764531},
zbl = {07893390},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/}
}
TY - JOUR AU - Kaur, Amrinder AU - Sankaranarayanan, Ayyadurai TI - On certain $GL(6)$ form and its Rankin-Selberg convolution JO - Czechoslovak Mathematical Journal PY - 2024 SP - 415 EP - 427 VL - 74 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/ DO - 10.21136/CMJ.2024.0355-23 LA - en ID - 10_21136_CMJ_2024_0355_23 ER -
%0 Journal Article %A Kaur, Amrinder %A Sankaranarayanan, Ayyadurai %T On certain $GL(6)$ form and its Rankin-Selberg convolution %J Czechoslovak Mathematical Journal %D 2024 %P 415-427 %V 74 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0355-23/ %R 10.21136/CMJ.2024.0355-23 %G en %F 10_21136_CMJ_2024_0355_23
Kaur, Amrinder; Sankaranarayanan, Ayyadurai. On certain $GL(6)$ form and its Rankin-Selberg convolution. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 415-427. doi: 10.21136/CMJ.2024.0355-23
[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM
[2] Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. | DOI | MR | JFM
[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n,\Bbb{R})$. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[4] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function. Q. J. Math. 29 (1978), 443-462. | DOI | MR | JFM
[5] Kim, H. H.: Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$. J. Am. Math. Soc. 16 (2003), 139-183. | DOI | MR | JFM
[6] Kim, H. H., Shahidi, F.: Functorial products for GL$_2 \times \rm {GL}_3$ and the symmetric cube for GL$_2$. Ann. Math. (2) 155 (2002), 837-893. | DOI | MR | JFM
[7] Langlands, R. P.: Problems in the theory of automorphic forms. Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. | DOI | MR | JFM
[8] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687-716. | DOI | MR | JFM
[9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 153 (2022), 11453-11470. | DOI | MR | JFM
[10] Meurman, T.: On the order of the Maass $L$-function on the critical line. Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. | MR | JFM
[11] Nelson, P. D.: Bounds for standard $L$-functions. Available at {\def\let \relax \brokenlink{ , 237 pages. | arXiv | DOI
[12] Perelli, A.: General $L$-functions. Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. | DOI | MR | JFM
[13] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I. Proc. Camb. Philos. Soc. 35 (1939), 351-356. | DOI | MR | JFM
[14] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. B 43 (1940), 47-50 German. | MR | JFM
Cité par Sources :