Complete monotonicity of the remainder in an asymptotic series related to the psi function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
DOI : 10.21136/CMJ.2024.0354-23
Classification : 26A48, 33B15, 41A60
Keywords: psi function; asymptotic expansion; complete monotonicity
@article{10_21136_CMJ_2024_0354_23,
     author = {Yang, Zhen-Hang and Tian, Jing-Feng},
     title = {Complete monotonicity of the remainder in an asymptotic series related to the psi function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--351},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0354-23},
     mrnumber = {4717838},
     zbl = {07893383},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/}
}
TY  - JOUR
AU  - Yang, Zhen-Hang
AU  - Tian, Jing-Feng
TI  - Complete monotonicity of the remainder in an asymptotic series related to the psi function
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 337
EP  - 351
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/
DO  - 10.21136/CMJ.2024.0354-23
LA  - en
ID  - 10_21136_CMJ_2024_0354_23
ER  - 
%0 Journal Article
%A Yang, Zhen-Hang
%A Tian, Jing-Feng
%T Complete monotonicity of the remainder in an asymptotic series related to the psi function
%J Czechoslovak Mathematical Journal
%D 2024
%P 337-351
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/
%R 10.21136/CMJ.2024.0354-23
%G en
%F 10_21136_CMJ_2024_0354_23
Yang, Zhen-Hang; Tian, Jing-Feng. Complete monotonicity of the remainder in an asymptotic series related to the psi function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351. doi: 10.21136/CMJ.2024.0354-23

[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). | MR | JFM

[2] Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66 (1997), 373-389. | DOI | MR | JFM

[3] Atanassov, R. D., Tsoukrovski, U. V.: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulg. Sci. 41 (1988), 21-23 \99999MR99999 0939205 \goodbreak. | MR | JFM

[4] Chen, C.-P., Paris, R. B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250 (2015), 514-529. | DOI | MR | JFM

[5] Fields, J. L.: The uniform asymptotic expansion of a ratio of Gamma functions. Constructive Theory of Functions Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. | MR | JFM

[6] Frenzen, C. L.: Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (1987), 890-896. | DOI | MR | JFM

[7] Luke, Y. L.: On the ratio of two gamma functions. Jñ\=an\=abha 9-10 (1980), 143-148. | MR | JFM

[8] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). | DOI | MR | JFM

[9] Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296 (2004), 603-607. | DOI | MR | JFM

[10] Schilling, R. L., Song, R., Vondraček, Z.: Bernstein functions: Theory and Applications. de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). | DOI | MR | JFM

[11] Tian, J.-F., Yang, Z.: Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders. J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. | DOI | MR | JFM

[12] Widder, D. V.: The Laplace Transform. Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). | MR | JFM

[13] Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441 (2016), 549-564. | DOI | MR | JFM

[14] Yang, Z.-H., Chu, Y.-M.: Jordan type inequalities for hyperbolic functions and their applications. J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. | DOI | MR | JFM

[15] Yang, Z.-H., Tian, J.-F., Ha, M.-H.: A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 148 (2020), 2163-2178. | DOI | MR | JFM

[16] Yang, Z., Tian, J.-F.: Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions. J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. | DOI | MR | JFM

Cité par Sources :