Complete monotonicity of the remainder in an asymptotic series related to the psi function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
Classification :
26A48, 33B15, 41A60
Keywords: psi function; asymptotic expansion; complete monotonicity
Keywords: psi function; asymptotic expansion; complete monotonicity
@article{10_21136_CMJ_2024_0354_23,
author = {Yang, Zhen-Hang and Tian, Jing-Feng},
title = {Complete monotonicity of the remainder in an asymptotic series related to the psi function},
journal = {Czechoslovak Mathematical Journal},
pages = {337--351},
publisher = {mathdoc},
volume = {74},
number = {1},
year = {2024},
doi = {10.21136/CMJ.2024.0354-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/}
}
TY - JOUR AU - Yang, Zhen-Hang AU - Tian, Jing-Feng TI - Complete monotonicity of the remainder in an asymptotic series related to the psi function JO - Czechoslovak Mathematical Journal PY - 2024 SP - 337 EP - 351 VL - 74 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/ DO - 10.21136/CMJ.2024.0354-23 LA - en ID - 10_21136_CMJ_2024_0354_23 ER -
%0 Journal Article %A Yang, Zhen-Hang %A Tian, Jing-Feng %T Complete monotonicity of the remainder in an asymptotic series related to the psi function %J Czechoslovak Mathematical Journal %D 2024 %P 337-351 %V 74 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/ %R 10.21136/CMJ.2024.0354-23 %G en %F 10_21136_CMJ_2024_0354_23
Yang, Zhen-Hang; Tian, Jing-Feng. Complete monotonicity of the remainder in an asymptotic series related to the psi function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351. doi: 10.21136/CMJ.2024.0354-23
Cité par Sources :