Complete monotonicity of the remainder in an asymptotic series related to the psi function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
DOI : 10.21136/CMJ.2024.0354-23
Classification : 26A48, 33B15, 41A60
Keywords: psi function; asymptotic expansion; complete monotonicity
@article{10_21136_CMJ_2024_0354_23,
     author = {Yang, Zhen-Hang and Tian, Jing-Feng},
     title = {Complete monotonicity of the remainder in an asymptotic series related to the psi function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--351},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.21136/CMJ.2024.0354-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/}
}
TY  - JOUR
AU  - Yang, Zhen-Hang
AU  - Tian, Jing-Feng
TI  - Complete monotonicity of the remainder in an asymptotic series related to the psi function
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 337
EP  - 351
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/
DO  - 10.21136/CMJ.2024.0354-23
LA  - en
ID  - 10_21136_CMJ_2024_0354_23
ER  - 
%0 Journal Article
%A Yang, Zhen-Hang
%A Tian, Jing-Feng
%T Complete monotonicity of the remainder in an asymptotic series related to the psi function
%J Czechoslovak Mathematical Journal
%D 2024
%P 337-351
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/
%R 10.21136/CMJ.2024.0354-23
%G en
%F 10_21136_CMJ_2024_0354_23
Yang, Zhen-Hang; Tian, Jing-Feng. Complete monotonicity of the remainder in an asymptotic series related to the psi function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 337-351. doi : 10.21136/CMJ.2024.0354-23. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0354-23/

Cité par Sources :