Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 397-414
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is known that if $f$ is holomorphic in the open unit disc ${\mathbb D}$ of the complex plane and if, for some $c>0$, $|f(z)|\leq 1/(1-|z|^2)^c$, $z\in {\mathbb D}$, then $|f'(z)|\leq 2(c+1)/(1-|z|^2)^{c+1}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in ${\mathbb D}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.
It is known that if $f$ is holomorphic in the open unit disc ${\mathbb D}$ of the complex plane and if, for some $c>0$, $|f(z)|\leq 1/(1-|z|^2)^c$, $z\in {\mathbb D}$, then $|f'(z)|\leq 2(c+1)/(1-|z|^2)^{c+1}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in ${\mathbb D}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.
DOI : 10.21136/CMJ.2024.0332-23
Classification : 30C50, 30C99, 30D45
Keywords: Bloch function; meromorphic function; Landau's reduction; Taylor coefficient
@article{10_21136_CMJ_2024_0332_23,
     author = {Bhowmik, Bappaditya and Sen, Sambhunath},
     title = {Bounds for the derivative of certain meromorphic functions and on meromorphic {Bloch-type} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {397--414},
     year = {2024},
     volume = {74},
     number = {2},
     doi = {10.21136/CMJ.2024.0332-23},
     mrnumber = {4764530},
     zbl = {07893389},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0332-23/}
}
TY  - JOUR
AU  - Bhowmik, Bappaditya
AU  - Sen, Sambhunath
TI  - Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 397
EP  - 414
VL  - 74
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0332-23/
DO  - 10.21136/CMJ.2024.0332-23
LA  - en
ID  - 10_21136_CMJ_2024_0332_23
ER  - 
%0 Journal Article
%A Bhowmik, Bappaditya
%A Sen, Sambhunath
%T Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
%J Czechoslovak Mathematical Journal
%D 2024
%P 397-414
%V 74
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0332-23/
%R 10.21136/CMJ.2024.0332-23
%G en
%F 10_21136_CMJ_2024_0332_23
Bhowmik, Bappaditya; Sen, Sambhunath. Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 2, pp. 397-414. doi: 10.21136/CMJ.2024.0332-23

[1] Ahlfors, L. V., Grunsky, H.: Über die Blochsche Konstante. Math. Z. 42 (1937), 671-673 German. | DOI | MR | JFM

[2] Anderson, J. M., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew. Math. 270 (1974), 12-37. | DOI | MR | JFM

[3] Bhowmik, B., Sen, S.: Improved Bloch and Landau constants for meromorphic functions. Can. Math. Bull. 66 (2023), 1269-1273. | DOI | MR | JFM

[4] Bhowmik, B., Sen, S.: Landau and Bloch constants for meromorphic functions. Monatsh. Math. 201 (2023), 359-373. | DOI | MR | JFM

[5] Bloch, A.: Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation. C.R. Acad. Sci. Paris 178 (1924), 2051-2052 French \99999JFM99999 50.0217.02. | MR

[6] Bloch, A.: Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation. Ann. Fac. Sci. Univ. Toulouse, III. Ser. 17 (1925), 1-22 French \99999JFM99999 52.0324.02. | DOI | MR

[7] Bonk, M.: Extremalprobleme bei Bloch-Funktionen: Ph. D. Thesis. Technische Universität Braunschweig, Braunschweig (1988), German. | JFM

[8] Chen, H., Gauthier, P. M.: On Bloch's constant. J. Anal. Math. 69 (1996), 275-291. | DOI | MR | JFM

[9] Duren, P. L., Shaprio, H. S., Shields, A. L.: Singular measures and domains not of Smirnov type. Duke Math. J. 33 (1966), 247-254. | DOI | MR | JFM

[10] Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions. Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). | DOI | MR | JFM

[11] Kayumov, I. R., Wirths, K.-J.: Coefficient problems for Bloch functions. Anal. Math. Phys. 9 (2019), 1069-1085. | DOI | MR | JFM

[12] Kayumov, I. R., Wirths, K.-J.: On the sum of squares of the coefficients of Bloch functions. Monatsh. Math. 190 (2019), 123-135. | DOI | MR | JFM

[13] Kayumov, I. R., Wirths, K.-J.: Inequalities of Carlson type for $\alpha$-Bloch functions. Mediterr. J. Math. 17 (2020), Article ID 83, 9 pages. | DOI | MR | JFM

[14] Liu, M.-C.: On the derivative of some analytic functions. Math. Z. 132 (1973), 205-208. | DOI | MR | JFM

[15] Pommerenke, C.: On Bloch functions. J. Lond. Math. Soc., II. Ser. 2 (1970), 689-695. | DOI | MR | JFM

[16] Problem N in a list of problems on Analytic Function Theory drawn up by members of a Symposium held at the University of Kentucky May 27--June 1, 1965. Bull. Am. Math. Soc. 71 (1965), 855-857. | DOI | MR

[17] Raupach, E.: Eine Abschätzungsmethode für die reellwertigen Lösungen der Differentialgleichung $\Delta \alpha=-4/(1-z\bar{z})^2$. Bonn. Math. Schr. 9 (1960), 124 pages German. | MR | JFM

[18] Robertson, M. S.: A distortion theorem for analytic functions. Proc. Am. Math. Soc. 28 (1971), 551-556. | DOI | MR | JFM

[19] Wirths, K.-J.: Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen. Arch. Math. 30 (1978), 606-612 German. | DOI | MR | JFM

[20] Zhaou, R.: On $\alpha$-Bloch functions and VMOA. Acta Math. Sci. 16 (1996), 349-360. | DOI | MR | JFM

Cité par Sources :