Representation functions for binary linear forms
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 301-304
Let $\mathbb {Z}$ be the set of integers, $\mathbb {N}_0$ the set of nonnegative integers and $F(x_1,x_2)=u_1x_1+u_2x_2$ be a binary linear form whose coefficients $u_1$, $u_2$ are nonzero, relatively prime integers such that $u_1u_2\neq \pm 1$ and $u_1u_2\neq -2$. Let $f\colon \mathbb {Z}\rightarrow \mathbb {N}_0\cup \{\infty \}$ be any function such that the set $f^{-1}(0)$ has asymptotic density zero. In 2007, M. B. Nathanson (2007) proved that there exists a set $A$ of integers such that $r_{A,F}(n)=f(n)$ for all integers $n$, where $r_{A,F}(n)=|\{(a,a') \colon n=u_1a+u_2a' \colon a,a'\in A\}|$. We add the structure of difference for the binary linear form $F(x_1,x_2)$.
Let $\mathbb {Z}$ be the set of integers, $\mathbb {N}_0$ the set of nonnegative integers and $F(x_1,x_2)=u_1x_1+u_2x_2$ be a binary linear form whose coefficients $u_1$, $u_2$ are nonzero, relatively prime integers such that $u_1u_2\neq \pm 1$ and $u_1u_2\neq -2$. Let $f\colon \mathbb {Z}\rightarrow \mathbb {N}_0\cup \{\infty \}$ be any function such that the set $f^{-1}(0)$ has asymptotic density zero. In 2007, M. B. Nathanson (2007) proved that there exists a set $A$ of integers such that $r_{A,F}(n)=f(n)$ for all integers $n$, where $r_{A,F}(n)=|\{(a,a') \colon n=u_1a+u_2a' \colon a,a'\in A\}|$. We add the structure of difference for the binary linear form $F(x_1,x_2)$.
DOI :
10.21136/CMJ.2024.0326-23
Classification :
11B13, 11B34
Keywords: representation function; binary linear form; density
Keywords: representation function; binary linear form; density
@article{10_21136_CMJ_2024_0326_23,
author = {Xue, Fang-Gang},
title = {Representation functions for binary linear forms},
journal = {Czechoslovak Mathematical Journal},
pages = {301--304},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0326-23},
mrnumber = {4717835},
zbl = {07893380},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0326-23/}
}
TY - JOUR AU - Xue, Fang-Gang TI - Representation functions for binary linear forms JO - Czechoslovak Mathematical Journal PY - 2024 SP - 301 EP - 304 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0326-23/ DO - 10.21136/CMJ.2024.0326-23 LA - en ID - 10_21136_CMJ_2024_0326_23 ER -
Xue, Fang-Gang. Representation functions for binary linear forms. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 301-304. doi: 10.21136/CMJ.2024.0326-23
[1] Fang, J.-H.: Representation functions avoiding integers with density zero. Eur. J. Comb. 102 (2022), Article ID 103490, 7 pages. | DOI | MR | JFM
[2] Nathanson, M. B.: Representation functions of bases for binary linear forms. Funct. Approximatio, Comment. Math. 37 (2007), 341-350. | DOI | MR | JFM
[3] Xiong, R., Tang, M.: Unique representation bi-basis for the integers. Bull. Aust. Math. Soc. 89 (2014), 460-465 \99999DOI99999 10.1017/S0004972713000762 . | DOI | MR | JFM
Cité par Sources :