Sufficient conditions on the existence of factors in graphs involving minimum degree
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1299-1311
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a set $\{A, B, C, \ldots \}$ of graphs, an $\{A, B, C, \ldots \}$-factor of a graph $G$ is a spanning subgraph $F$ of $G$, where each component of $F$ is contained in $\{A, B, C, \ldots \}$. It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the $Q$-spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the $Q$-spectral radius and the distance spectral radius for a graph involving minimum degree to guarantee the existence of a $\{K_2, \{C_k\}\}$-factor, respectively.
For a set $\{A, B, C, \ldots \}$ of graphs, an $\{A, B, C, \ldots \}$-factor of a graph $G$ is a spanning subgraph $F$ of $G$, where each component of $F$ is contained in $\{A, B, C, \ldots \}$. It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the $Q$-spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the $Q$-spectral radius and the distance spectral radius for a graph involving minimum degree to guarantee the existence of a $\{K_2, \{C_k\}\}$-factor, respectively.
DOI : 10.21136/CMJ.2024.0304-24
Classification : 05C35, 05C50
Keywords: factor; $Q$-spectral radius; distance spectral radius; minimum degree
@article{10_21136_CMJ_2024_0304_24,
     author = {Jia, Huicai and Lou, Jing},
     title = {Sufficient conditions on the existence of factors in graphs involving minimum degree},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1299--1311},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0304-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0304-24/}
}
TY  - JOUR
AU  - Jia, Huicai
AU  - Lou, Jing
TI  - Sufficient conditions on the existence of factors in graphs involving minimum degree
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1299
EP  - 1311
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0304-24/
DO  - 10.21136/CMJ.2024.0304-24
LA  - en
ID  - 10_21136_CMJ_2024_0304_24
ER  - 
%0 Journal Article
%A Jia, Huicai
%A Lou, Jing
%T Sufficient conditions on the existence of factors in graphs involving minimum degree
%J Czechoslovak Mathematical Journal
%D 2024
%P 1299-1311
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0304-24/
%R 10.21136/CMJ.2024.0304-24
%G en
%F 10_21136_CMJ_2024_0304_24
Jia, Huicai; Lou, Jing. Sufficient conditions on the existence of factors in graphs involving minimum degree. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1299-1311. doi: 10.21136/CMJ.2024.0304-24

[1] Akiyama, J., Avis, D., Era, H.: On a $\{1,2\}$-factor of a graph. TRU Math. 16 (1980), 97-102. | MR | JFM

[2] Amahashi, A., Kano, M.: On factors with given components. Discrete Math. 42 (1982), 1-6. | DOI | MR | JFM

[3] Ao, G., Liu, R., Yuan, J.: Spectral radius and spanning trees of graphs. Discrete Math. 346 (2023), Article ID 113400, 9 pages. | DOI | MR | JFM

[4] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York (1979). | DOI | MR | JFM

[5] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, New York (2008). | DOI | MR | JFM

[6] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). | DOI | MR | JFM

[7] Fan, D., Lin, H.: Binding number, $k$-factor and spectral radius of graphs. Electron. J. Comb. 31 (2024), Article ID P1.30, 26 pages. | DOI | MR | JFM

[8] Fan, D., Lin, H., Lu, H.: Spectral radius and $[a,b]$-factors in graphs. Discrete Math. 345 (2022), Article ID 112892, 9 pages. | DOI | MR | JFM

[9] Fan, A., Liu, R., Ao, G.: Spectral radius, fractional $[a,b]$-factor and ID-factor-critical graphs. Discrete Math. 347 (2024), Article ID 113976, 12 pages. | DOI | MR | JFM

[10] Godsil, C. D.: Algebraic Combinatorics. Chapman and Hall Mathematics. Chapman & Hall, New York (1993). | DOI | MR | JFM

[11] Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics 207. Springer, New York (2001). | DOI | MR | JFM

[12] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. | DOI | MR | JFM

[13] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press, Cambridge (1985). | DOI | MR | JFM

[14] Lou, J., Liu, R., Ao, G.: Fractional matching, factors and spectral radius in graphs involving minimum degree. Linear Algebra Appl. 677 (2023), 337-351. | DOI | MR | JFM

[15] Miao, S., Li, S.: Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs. Discrete Appl. Math. 326 (2023), 17-32. | DOI | MR | JFM

[16] Tutte, W. T.: The factors of graphs. Can. J. Math. 4 (1952), 314-328. | DOI | MR | JFM

Cité par Sources :