Are zero-symmetric simple nearrings with identity equiprime?
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1289-1298
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that there exist zero-symmetric simple nearrings with identity, which are not equiprime, solving a longstanding open problem.
We show that there exist zero-symmetric simple nearrings with identity, which are not equiprime, solving a longstanding open problem.
DOI : 10.21136/CMJ.2024.0302-24
Classification : 16N60, 16N80, 16Y30, 20E06, 20E32
Keywords: nearring with identity; infinite simple group; HNN extension; equiprime nearring; prime radical
@article{10_21136_CMJ_2024_0302_24,
     author = {Ke, Wen-Fong and Meyer, Johannes H.},
     title = {Are zero-symmetric simple nearrings with identity equiprime?},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1289--1298},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0302-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0302-24/}
}
TY  - JOUR
AU  - Ke, Wen-Fong
AU  - Meyer, Johannes H.
TI  - Are zero-symmetric simple nearrings with identity equiprime?
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1289
EP  - 1298
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0302-24/
DO  - 10.21136/CMJ.2024.0302-24
LA  - en
ID  - 10_21136_CMJ_2024_0302_24
ER  - 
%0 Journal Article
%A Ke, Wen-Fong
%A Meyer, Johannes H.
%T Are zero-symmetric simple nearrings with identity equiprime?
%J Czechoslovak Mathematical Journal
%D 2024
%P 1289-1298
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0302-24/
%R 10.21136/CMJ.2024.0302-24
%G en
%F 10_21136_CMJ_2024_0302_24
Ke, Wen-Fong; Meyer, Johannes H. Are zero-symmetric simple nearrings with identity equiprime?. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1289-1298. doi: 10.21136/CMJ.2024.0302-24

[1] Booth, G. L., Groenewald, N. J., Veldsman, S. A.: A Kurosh-Amitsur prime radical for near-rings. Commun. Algebra 18 (1990), 3111-3122. | DOI | MR | JFM

[2] Clay, J. R.: The near-rings on groups of low order. Math. Z. 104 (1968), 364-371. | DOI | MR | JFM

[3] Divinsky, N. J.: Rings and Radicals. Mathematical Expositions 14. University of Toronto Press, Toronto (1965). | MR | JFM

[4] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups. J. Lond. Math. Soc. 24 (1949), 247-254. | DOI | MR | JFM

[5] Kaarli, K., Kriis, T.: Prime radical of near-rings. Tartu Riikl. Ül. Toimetised 764 (1987), 23-29 Russian. | MR | JFM

[6] Ke, W.-F., Meyer, J. H., Pilz, G. F., Wendt, G.: On zero-symmetric nearrings with identity whose additive groups are simple. Czech. Math. J. 74 (2024), 869-880. | DOI | MR

[7] Meyer, J. H.: Matrix Near-Rings: Ph. D. Thesis. University of Stellenbosch, Stellenbosch (1986).

[8] Pilz, G.: Near-Rings: The Theory and Its Applications. North-Holland Mathematics Studies 23. North-Holland, Amsterdam (1983). | DOI | MR | JFM

[9] Veldsman, S.: On equiprime near-rings. Commun. Algebra 20 (1992), 2569-2587. | DOI | MR | JFM

Cité par Sources :