Dual modules and reflexive modules with respect to a semidualizing module
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 983-1005
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi $-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules.
Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi $-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules.
DOI : 10.21136/CMJ.2024.0280-23
Classification : 16D40, 16D50, 18G25
Keywords: semidualizing module; $C$-dual module; $C$-torsionless module; $C$-reflexive module
@article{10_21136_CMJ_2024_0280_23,
     author = {Mao, Lixin},
     title = {Dual modules and reflexive modules with respect to a semidualizing module},
     journal = {Czechoslovak Mathematical Journal},
     pages = {983--1005},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0280-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0280-23/}
}
TY  - JOUR
AU  - Mao, Lixin
TI  - Dual modules and reflexive modules with respect to a semidualizing module
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 983
EP  - 1005
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0280-23/
DO  - 10.21136/CMJ.2024.0280-23
LA  - en
ID  - 10_21136_CMJ_2024_0280_23
ER  - 
%0 Journal Article
%A Mao, Lixin
%T Dual modules and reflexive modules with respect to a semidualizing module
%J Czechoslovak Mathematical Journal
%D 2024
%P 983-1005
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0280-23/
%R 10.21136/CMJ.2024.0280-23
%G en
%F 10_21136_CMJ_2024_0280_23
Mao, Lixin. Dual modules and reflexive modules with respect to a semidualizing module. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 983-1005. doi: 10.21136/CMJ.2024.0280-23

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1974). | DOI | MR | JFM

[2] Angeleri-Hügel, L.: Endocoherent modules. Pac. J. Math. 212 (2003), 1-11. | DOI | MR | JFM

[3] Azumaya, G.: Finite splitness and finite projectivity. J. Algebra 106 (1987), 114-134. | DOI | MR | JFM

[4] Bennis, D., Maaouy, R. El, Rozas, J. R. García, Oyonarte, L.: On relative counterpart of Auslander's conditions. J. Algebra Appl. 22 (2023), Arrticle ID 2350015, 25 pages. | DOI | MR | JFM

[5] Camillo, V.: Coherence for polynomial rings. J. Algebra 132 (1990), 72-76. | DOI | MR | JFM

[6] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. | DOI | MR | JFM

[7] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | JFM

[8] Colby, R. R.: Rings which have flat injective modules. J. Algebra 35 (1975), 239-252. | DOI | MR | JFM

[9] Dai, G., Ding, N.: Coherent rings and absolutely pure precovers. Commun. Algebra 47 (2019), 4743-4748. | DOI | MR | JFM

[10] Ding, N.: Dual modules of specific modules. J. Math. Res. Expo. 10 (1990), 337-340 Chinese. | MR | JFM

[11] Ding, N., Chen, J.: Relative coherence and preenvelopes. Manuscr. Math. 81 (1993), 243-262. | DOI | MR | JFM

[12] Enochs, E. E., Jenda, O. M. G.: Resolvents and dimensions of modules and rings. Arch. Math. 56 (1991), 528-532. | DOI | MR | JFM

[13] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[14] Jones, M. Finkel: $f$-projectivity and flat epimorphisms. Commun. Algebra 9 (1981), 1603-1616. | DOI | MR | JFM

[15] Jones, M. Finkel, Teply, M. L.: Coherent rings of finite weak global dimension. Commun. Algebra 10 (1982), 493-503. | DOI | MR | JFM

[16] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. | DOI | MR | JFM

[17] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2006). | DOI | MR | JFM

[18] Golod, E. S.: $G$-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), 62-66 Russian. | MR | JFM

[19] Holm, H., Jørgensen, H.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR | JFM

[20] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. | DOI | MR | JFM

[21] Huang, Z.: On the $C$-flatness and injectivity of character modules. Electron. Res. Arch. 30 (2022), 2899-2910. | DOI | MR | JFM

[22] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. | DOI | MR | JFM

[23] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). | DOI | MR | JFM

[24] Mao, L.: Envelopes, covers and semidualizing modules. J. Algebra Appl. 18 (2019), Article ID 1950137, 12 pages. | DOI | MR | JFM

[25] Mao, L., Ding, N.: Relative flatness, Mittag-Leffler modules, and endocoherence. Commun. Algebra 34 (2006), 3281-3299. | DOI | MR | JFM

[26] Salimi, M., Tavasoli, E., Moradifar, P., Yassemi, S.: Syzygy and torsionless modules with respect to a semidualizing module. Algebr. Represent. Theory 17 (2014), 1217-1234. | DOI | MR | JFM

[27] Sather-Wagstaff, S.: Semidualizing modules. Available at \let \relax \brokenlink{ https://www.ndsu.edu/}{pubweb/ ssatherw/DOCS/survey.pdf} (2008), 34 pages.

[28] Stenström, B.: Coherent rings and $FP$-injective modules. J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. | DOI | MR | JFM

[29] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | JFM

[30] Tang, X.: $FP$-injectivity relative to a semidualizing bimodule. Publ. Math. Debr. 80 (2012), 311-326. | DOI | MR | JFM

[31] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. North-Holland, Amsterdam (1974). | DOI | MR | JFM

[32] Yan, X. G., Zhu, X. S.: Characterizations of some rings with $\mathcal{C}$-projective, $\mathcal{C}$-($FP$-)injective and $\mathcal{C}$-flat modules. Czech. Math. J. 61 (2011), 641-652. | DOI | MR | JFM

[33] Zhang, D., Ouyang, B.: Semidualizing modules and related modules. J. Algebra Appl. 10 (2011), 1261-1282. | DOI | MR | JFM

Cité par Sources :