Keywords: nilpotent; periodic; finite lower central depth; hyper-(Abelian-by-finite); minimal condition on normal subgroups
@article{10_21136_CMJ_2024_0271_23,
author = {Gherbi, Fares and Trabelsi, Nadir},
title = {A property which ensures that a finitely generated {hyper-(Abelian-by-finite)} group is finite-by-nilpotent},
journal = {Czechoslovak Mathematical Journal},
pages = {975--982},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0271-23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/}
}
TY - JOUR AU - Gherbi, Fares AU - Trabelsi, Nadir TI - A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent JO - Czechoslovak Mathematical Journal PY - 2024 SP - 975 EP - 982 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/ DO - 10.21136/CMJ.2024.0271-23 LA - en ID - 10_21136_CMJ_2024_0271_23 ER -
%0 Journal Article %A Gherbi, Fares %A Trabelsi, Nadir %T A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent %J Czechoslovak Mathematical Journal %D 2024 %P 975-982 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/ %R 10.21136/CMJ.2024.0271-23 %G en %F 10_21136_CMJ_2024_0271_23
Gherbi, Fares; Trabelsi, Nadir. A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 975-982. doi: 10.21136/CMJ.2024.0271-23
[1] Brookes, C. J. B.: Engel elements of soluble groups. Bull. Lond. Math. Soc. 18 (1986), 7-10. | DOI | MR | JFM
[2] Falco, M. De, Giovanni, F. De, Musella, C., Trabelsi, N.: A nilpotency-like condition for infinite groups. J. Aust. Math. Soc. 105 (2018), 24-33. | DOI | MR | JFM
[3] Gherbi, F., Trabelsi, N.: Groups having many 2-generated subgroups in a given class. Bull. Korean Math. Soc. 56 (2019), 365-371. | DOI | MR | JFM
[4] Gherbi, F., Trabelsi, N.: Groups with restrictions on some subgroups generated by two conjugates. Adv. Group Theory Appl. 12 (2021), 35-45. | DOI | MR | JFM
[5] Gherbi, F., Trabelsi, N.: Properties of Abelian-by-cyclic shared by soluble finitely generated groups. Turk. J. Math. 46 (2022), 912-918. | DOI | MR | JFM
[6] Golod, E. S.: Some problems of Burnside type. Twelve Papers on Algebra, Algebraic Geometry and Topology American Mathematical Society Translations: Series 2, Vol. 84. AMS, Providence (1969), 83-88. | DOI | MR | JFM
[7] Hammoudi, L.: Burnside and Kurosh problems. Int. J. Algebra Comput. 14 (2004), 197-211. | DOI | MR | JFM
[8] Lennox, J. C.: Finitely generated soluble groups in which all subgroups have finite lower central depth. Bull. Lond. Math. Soc. 7 (1975), 273-278. | DOI | MR | JFM
[9] Lennox, J. C.: Lower central depth in finitely generated soluble-by-finite groups. Glasg. Math. J. 19 (1978), 153-154. | DOI | MR | JFM
[10] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1. Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, New York (1972). | DOI | MR | JFM
[11] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2. Ergebnisse der Mathematik und ihrer Grenzgebiete 63. Springer, New York (1972). | DOI | MR | JFM
[12] Robinson, D. J. S.: A Course in The Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). | DOI | MR | JFM
[13] Segal, D.: A residual property of finitely generated abelian-by-nilpotent groups. J. Algebra 32 (1974), 389-399. | DOI | MR | JFM
Cité par Sources :