A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 975-982
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathfrak {M}$ be the class of groups satisfying the minimal condition on normal subgroups and let $\Omega $ be the class of groups of finite lower central depth, that is groups $G$ such that $\gamma _{i}(G)=\gamma _{i+1}(G)$ for some positive integer $i$. The main result states that if $G$ is a finitely generated hyper-(Abelian-by-finite) group such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {M}\Omega $ for every $h\in H_{x}$, then $G$ is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated hyper-(Abelian-by-finite) group $G$ such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {T}\Omega $ for every $h\in H_{x}$, is periodic-by-nilpotent; where $\mathfrak {T}$ stands for the class of periodic groups.
Let $\mathfrak {M}$ be the class of groups satisfying the minimal condition on normal subgroups and let $\Omega $ be the class of groups of finite lower central depth, that is groups $G$ such that $\gamma _{i}(G)=\gamma _{i+1}(G)$ for some positive integer $i$. The main result states that if $G$ is a finitely generated hyper-(Abelian-by-finite) group such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {M}\Omega $ for every $h\in H_{x}$, then $G$ is finite-by-nilpotent. As a consequence of this result, we prove that a finitely generated hyper-(Abelian-by-finite) group $G$ such that for every $x\in G$, there exists a normal subgroup $H_{x}$ of finite index in $G$ satisfying $\langle x,x^{h}\rangle \in \mathfrak {T}\Omega $ for every $h\in H_{x}$, is periodic-by-nilpotent; where $\mathfrak {T}$ stands for the class of periodic groups.
DOI : 10.21136/CMJ.2024.0271-23
Classification : 20E25, 20F19
Keywords: nilpotent; periodic; finite lower central depth; hyper-(Abelian-by-finite); minimal condition on normal subgroups
@article{10_21136_CMJ_2024_0271_23,
     author = {Gherbi, Fares and Trabelsi, Nadir},
     title = {A property which ensures that a finitely generated {hyper-(Abelian-by-finite)} group is finite-by-nilpotent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {975--982},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0271-23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/}
}
TY  - JOUR
AU  - Gherbi, Fares
AU  - Trabelsi, Nadir
TI  - A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 975
EP  - 982
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/
DO  - 10.21136/CMJ.2024.0271-23
LA  - en
ID  - 10_21136_CMJ_2024_0271_23
ER  - 
%0 Journal Article
%A Gherbi, Fares
%A Trabelsi, Nadir
%T A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent
%J Czechoslovak Mathematical Journal
%D 2024
%P 975-982
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0271-23/
%R 10.21136/CMJ.2024.0271-23
%G en
%F 10_21136_CMJ_2024_0271_23
Gherbi, Fares; Trabelsi, Nadir. A property which ensures that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 975-982. doi: 10.21136/CMJ.2024.0271-23

[1] Brookes, C. J. B.: Engel elements of soluble groups. Bull. Lond. Math. Soc. 18 (1986), 7-10. | DOI | MR | JFM

[2] Falco, M. De, Giovanni, F. De, Musella, C., Trabelsi, N.: A nilpotency-like condition for infinite groups. J. Aust. Math. Soc. 105 (2018), 24-33. | DOI | MR | JFM

[3] Gherbi, F., Trabelsi, N.: Groups having many 2-generated subgroups in a given class. Bull. Korean Math. Soc. 56 (2019), 365-371. | DOI | MR | JFM

[4] Gherbi, F., Trabelsi, N.: Groups with restrictions on some subgroups generated by two conjugates. Adv. Group Theory Appl. 12 (2021), 35-45. | DOI | MR | JFM

[5] Gherbi, F., Trabelsi, N.: Properties of Abelian-by-cyclic shared by soluble finitely generated groups. Turk. J. Math. 46 (2022), 912-918. | DOI | MR | JFM

[6] Golod, E. S.: Some problems of Burnside type. Twelve Papers on Algebra, Algebraic Geometry and Topology American Mathematical Society Translations: Series 2, Vol. 84. AMS, Providence (1969), 83-88. | DOI | MR | JFM

[7] Hammoudi, L.: Burnside and Kurosh problems. Int. J. Algebra Comput. 14 (2004), 197-211. | DOI | MR | JFM

[8] Lennox, J. C.: Finitely generated soluble groups in which all subgroups have finite lower central depth. Bull. Lond. Math. Soc. 7 (1975), 273-278. | DOI | MR | JFM

[9] Lennox, J. C.: Lower central depth in finitely generated soluble-by-finite groups. Glasg. Math. J. 19 (1978), 153-154. | DOI | MR | JFM

[10] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1. Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, New York (1972). | DOI | MR | JFM

[11] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2. Ergebnisse der Mathematik und ihrer Grenzgebiete 63. Springer, New York (1972). | DOI | MR | JFM

[12] Robinson, D. J. S.: A Course in The Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). | DOI | MR | JFM

[13] Segal, D.: A residual property of finitely generated abelian-by-nilpotent groups. J. Algebra 32 (1974), 389-399. | DOI | MR | JFM

Cité par Sources :