Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 283-299
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.\looseness -1
This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.\looseness -1
DOI : 10.21136/CMJ.2024.0261-23
Classification : 17A99, 19G24, 20A99, 20F19
Keywords: multiplicative Lie algebra; commutator; nilpotent group; perfect group; central extensions
@article{10_21136_CMJ_2024_0261_23,
     author = {Singh, Dev Karan and Pandey, Mani Shankar and Kumar, Shiv Datt},
     title = {Lie perfect, {Lie} central extension and generalization of nilpotency in multiplicative {Lie} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {283--299},
     year = {2024},
     volume = {74},
     number = {1},
     doi = {10.21136/CMJ.2024.0261-23},
     mrnumber = {4717834},
     zbl = {07893379},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/}
}
TY  - JOUR
AU  - Singh, Dev Karan
AU  - Pandey, Mani Shankar
AU  - Kumar, Shiv Datt
TI  - Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 283
EP  - 299
VL  - 74
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/
DO  - 10.21136/CMJ.2024.0261-23
LA  - en
ID  - 10_21136_CMJ_2024_0261_23
ER  - 
%0 Journal Article
%A Singh, Dev Karan
%A Pandey, Mani Shankar
%A Kumar, Shiv Datt
%T Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras
%J Czechoslovak Mathematical Journal
%D 2024
%P 283-299
%V 74
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/
%R 10.21136/CMJ.2024.0261-23
%G en
%F 10_21136_CMJ_2024_0261_23
Singh, Dev Karan; Pandey, Mani Shankar; Kumar, Shiv Datt. Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 283-299. doi: 10.21136/CMJ.2024.0261-23

[1] Bak, A., Donadze, G., Inassaridze, N., Ladra, M.: Homology of multiplicative Lie rings. J. Pure Appl. Algebra 208 (2007), 761-777. | DOI | MR | JFM

[2] Donadze, G., Inassaridze, N., Ladra, M., Vieites, A. M.: Exact sequences in homology of multiplicative Lie rings and a new version of Stallings' theorem. J. Pure Appl. Algebra 222 (2018), 1786-1802. | DOI | MR | JFM

[3] Donadze, G., Ladra, M.: More on five commutator identities. J. Homotopy Relat. Struct. 2 (2007), 45-55. | MR | JFM

[4] Ellis, G. J.: On five well-known commutator identities. J. Aust. Math. Soc., Ser. A 54 (1993), 1-19. | DOI | MR | JFM

[5] Lal, R.: Algebra 2. Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier. Infosys Science Foundation Series. Springer, Singapore (2017). | DOI | MR | JFM

[6] Lal, R., Upadhyay, S. K.: Multiplicative Lie algebras and Schur multiplier. J. Pure Appl. Algebra 223 (2019), 3695-3721. | DOI | MR | JFM

[7] Pandey, M. S., Lal, R., Upadhyay, S. K.: Lie commutator, solvability and nilpotency in multiplicative Lie algebras. J. Algebra Appl. 20 (2021), Article ID 2150138, 11 pages. | DOI | MR | JFM

[8] Pandey, M. S., Upadhyay, S. K.: Theory of extensions of multiplicative Lie algebras. J. Lie Theory 31 (2021), 637-658. | MR | JFM

[9] Pandey, M. S., Upadhyay, S. K.: Classification of multiplicative Lie algebra structures on a finite group. Colloq. Math. 168 (2022), 25-34. | DOI | MR | JFM

[10] Point, F., Wantiez, P.: Nilpotency criteria for multiplicative Lie algebras. J. Pure Appl. Algebra 111 (1996), 229-243. | DOI | MR | JFM

[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). | DOI | MR | JFM

[12] Walls, G. L.: Multiplicative Lie algebras. Turk. J. Math. 43 (2019), 2888-2897. | DOI | MR | JFM

Cité par Sources :