Keywords: multiplicative Lie algebra; commutator; nilpotent group; perfect group; central extensions
@article{10_21136_CMJ_2024_0261_23,
author = {Singh, Dev Karan and Pandey, Mani Shankar and Kumar, Shiv Datt},
title = {Lie perfect, {Lie} central extension and generalization of nilpotency in multiplicative {Lie} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {283--299},
year = {2024},
volume = {74},
number = {1},
doi = {10.21136/CMJ.2024.0261-23},
mrnumber = {4717834},
zbl = {07893379},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/}
}
TY - JOUR AU - Singh, Dev Karan AU - Pandey, Mani Shankar AU - Kumar, Shiv Datt TI - Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras JO - Czechoslovak Mathematical Journal PY - 2024 SP - 283 EP - 299 VL - 74 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/ DO - 10.21136/CMJ.2024.0261-23 LA - en ID - 10_21136_CMJ_2024_0261_23 ER -
%0 Journal Article %A Singh, Dev Karan %A Pandey, Mani Shankar %A Kumar, Shiv Datt %T Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras %J Czechoslovak Mathematical Journal %D 2024 %P 283-299 %V 74 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0261-23/ %R 10.21136/CMJ.2024.0261-23 %G en %F 10_21136_CMJ_2024_0261_23
Singh, Dev Karan; Pandey, Mani Shankar; Kumar, Shiv Datt. Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 1, pp. 283-299. doi: 10.21136/CMJ.2024.0261-23
[1] Bak, A., Donadze, G., Inassaridze, N., Ladra, M.: Homology of multiplicative Lie rings. J. Pure Appl. Algebra 208 (2007), 761-777. | DOI | MR | JFM
[2] Donadze, G., Inassaridze, N., Ladra, M., Vieites, A. M.: Exact sequences in homology of multiplicative Lie rings and a new version of Stallings' theorem. J. Pure Appl. Algebra 222 (2018), 1786-1802. | DOI | MR | JFM
[3] Donadze, G., Ladra, M.: More on five commutator identities. J. Homotopy Relat. Struct. 2 (2007), 45-55. | MR | JFM
[4] Ellis, G. J.: On five well-known commutator identities. J. Aust. Math. Soc., Ser. A 54 (1993), 1-19. | DOI | MR | JFM
[5] Lal, R.: Algebra 2. Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier. Infosys Science Foundation Series. Springer, Singapore (2017). | DOI | MR | JFM
[6] Lal, R., Upadhyay, S. K.: Multiplicative Lie algebras and Schur multiplier. J. Pure Appl. Algebra 223 (2019), 3695-3721. | DOI | MR | JFM
[7] Pandey, M. S., Lal, R., Upadhyay, S. K.: Lie commutator, solvability and nilpotency in multiplicative Lie algebras. J. Algebra Appl. 20 (2021), Article ID 2150138, 11 pages. | DOI | MR | JFM
[8] Pandey, M. S., Upadhyay, S. K.: Theory of extensions of multiplicative Lie algebras. J. Lie Theory 31 (2021), 637-658. | MR | JFM
[9] Pandey, M. S., Upadhyay, S. K.: Classification of multiplicative Lie algebra structures on a finite group. Colloq. Math. 168 (2022), 25-34. | DOI | MR | JFM
[10] Point, F., Wantiez, P.: Nilpotency criteria for multiplicative Lie algebras. J. Pure Appl. Algebra 111 (1996), 229-243. | DOI | MR | JFM
[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). | DOI | MR | JFM
[12] Walls, G. L.: Multiplicative Lie algebras. Turk. J. Math. 43 (2019), 2888-2897. | DOI | MR | JFM
Cité par Sources :