Mean values related to the Dedekind zeta-function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1265-1274
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
DOI : 10.21136/CMJ.2024.0252-24
Classification : 11F11, 11F30, 11F66, 11N37
Keywords: cusp form; Dedekind zeta-function; $L$-function
@article{10_21136_CMJ_2024_0252_24,
     author = {Tang, Hengcai and Wang, Youjun},
     title = {Mean values related to the {Dedekind} zeta-function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1265--1274},
     year = {2024},
     volume = {74},
     number = {4},
     doi = {10.21136/CMJ.2024.0252-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/}
}
TY  - JOUR
AU  - Tang, Hengcai
AU  - Wang, Youjun
TI  - Mean values related to the Dedekind zeta-function
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 1265
EP  - 1274
VL  - 74
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/
DO  - 10.21136/CMJ.2024.0252-24
LA  - en
ID  - 10_21136_CMJ_2024_0252_24
ER  - 
%0 Journal Article
%A Tang, Hengcai
%A Wang, Youjun
%T Mean values related to the Dedekind zeta-function
%J Czechoslovak Mathematical Journal
%D 2024
%P 1265-1274
%V 74
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/
%R 10.21136/CMJ.2024.0252-24
%G en
%F 10_21136_CMJ_2024_0252_24
Tang, Hengcai; Wang, Youjun. Mean values related to the Dedekind zeta-function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1265-1274. doi: 10.21136/CMJ.2024.0252-24

[1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205-224. | DOI | MR | JFM

[2] Chakraborty, K., Krishnamoorthy, K.: On moments of non-normal number fields. J. Number Theory 238 (2022), 183-196. | DOI | MR | JFM

[3] Fomenko, O. M.: Mean values associated with the Dedekind zeta function. J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. | DOI | MR

[4] Good, A.: The square mean of Dirichlet series associated with cusp forms. Mathematika 29 (1982), 278-295. | DOI | MR | JFM

[5] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. John Wiley & Sohns, New York (1985). | MR | JFM

[6] Ivić, A.: On zeta-functions associated with Fourier coefficients of cusp forms. Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. | MR | JFM

[7] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). | MR | JFM

[8] Kim, H. H.: Functoriality and number of solutions of congruences. Acta Arith. 128 (2007), 235-243. | DOI | MR | JFM

[9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions. Int. Math. Res. Not. 2023 (2023), 11453-11470. | DOI | MR | JFM

[10] Liu, H., Li, S., Zhang, D.: Power moments of automorphic $L$-function attached to Maass forms. Int. J. Number Theory 12 (2016), 427-443. | DOI | MR | JFM

[11] Liu, H.: Mean value estimates related to the Dedekind zeta-function. Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. | DOI | MR | JFM

[12] Lü, G.: Mean values connected with the Dedekind zeta-function of a non-normal cubic field. Cent. Eur. J. Math. 11 (2013), 274-282. | DOI | MR | JFM

Cité par Sources :