Mean values related to the Dedekind zeta-function
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1265-1274
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., $$ \sum _{n\leq x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\leq x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), $$ where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
Classification :
11F11, 11F30, 11F66, 11N37
Keywords: cusp form; Dedekind zeta-function; $L$-function
Keywords: cusp form; Dedekind zeta-function; $L$-function
@article{10_21136_CMJ_2024_0252_24,
author = {Tang, Hengcai and Wang, Youjun},
title = {Mean values related to the {Dedekind} zeta-function},
journal = {Czechoslovak Mathematical Journal},
pages = {1265--1274},
year = {2024},
volume = {74},
number = {4},
doi = {10.21136/CMJ.2024.0252-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/}
}
TY - JOUR AU - Tang, Hengcai AU - Wang, Youjun TI - Mean values related to the Dedekind zeta-function JO - Czechoslovak Mathematical Journal PY - 2024 SP - 1265 EP - 1274 VL - 74 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/ DO - 10.21136/CMJ.2024.0252-24 LA - en ID - 10_21136_CMJ_2024_0252_24 ER -
%0 Journal Article %A Tang, Hengcai %A Wang, Youjun %T Mean values related to the Dedekind zeta-function %J Czechoslovak Mathematical Journal %D 2024 %P 1265-1274 %V 74 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0252-24/ %R 10.21136/CMJ.2024.0252-24 %G en %F 10_21136_CMJ_2024_0252_24
Tang, Hengcai; Wang, Youjun. Mean values related to the Dedekind zeta-function. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 4, pp. 1265-1274. doi: 10.21136/CMJ.2024.0252-24
Cité par Sources :