A note on linear derivations
Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 683-695
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer $w > 1 $ such that the polynomial ring in $n$ variables is $w$-differentially simple, all $w$ derivations are nonsimple and the $w$ derivations set contains a linear derivation.
At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer $w > 1 $ such that the polynomial ring in $n$ variables is $w$-differentially simple, all $w$ derivations are nonsimple and the $w$ derivations set contains a linear derivation.
DOI : 10.21136/CMJ.2024.0249-23
Classification : 13N15
Keywords: linear derivation; ring of constant; Fermat ring; Darboux polynomial; simple derivation
@article{10_21136_CMJ_2024_0249_23,
     author = {Patra, Amit},
     title = {A note on linear derivations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {683--695},
     year = {2024},
     volume = {74},
     number = {3},
     doi = {10.21136/CMJ.2024.0249-23},
     mrnumber = {4804954},
     zbl = {07953672},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0249-23/}
}
TY  - JOUR
AU  - Patra, Amit
TI  - A note on linear derivations
JO  - Czechoslovak Mathematical Journal
PY  - 2024
SP  - 683
EP  - 695
VL  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0249-23/
DO  - 10.21136/CMJ.2024.0249-23
LA  - en
ID  - 10_21136_CMJ_2024_0249_23
ER  - 
%0 Journal Article
%A Patra, Amit
%T A note on linear derivations
%J Czechoslovak Mathematical Journal
%D 2024
%P 683-695
%V 74
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2024.0249-23/
%R 10.21136/CMJ.2024.0249-23
%G en
%F 10_21136_CMJ_2024_0249_23
Patra, Amit. A note on linear derivations. Czechoslovak Mathematical Journal, Tome 74 (2024) no. 3, pp. 683-695. doi: 10.21136/CMJ.2024.0249-23

[1] Baltazar, R.: Simplicity and commutative bases of derivations in polynomial and power series rings. ISRN Algebra 2013 (2013), Article ID 560648, 4 pages. | DOI | MR | JFM

[2] Coutinho, S. C., Levcovitz, D.: On the differential simplicity of affine rings. Proc. Am. Math. Soc. 142 (2014), 1701-1704. | DOI | MR | JFM

[3] Ferragut, A., Gasull, A.: Seeking Darboux polynomials. Acta Appl. Math. 139 (2015), 167-186. | DOI | MR | JFM

[4] Lequain, Y.: Differential simplicity and complete integral closure. Pac. J. Math. 36 (1971), 741-751. | DOI | MR | JFM

[5] Nowicki, A.: Polynomial Derivations and Their Rings of Constants. Nicolaus Copernicus University Press, Toruń (1994). | MR | JFM

[6] Nowicki, A.: On the nonexistence of rational first integrals for systems of linear differential equations. Linear Algebra Appl. 235 (1996), 107-120. | DOI | MR | JFM

[7] Nowicki, A., Zieliński, J.: Rational constants of monomial derivations. J. Algebra 302 (2006), 387-418. | DOI | MR | JFM

[8] Veloso, M., Shestakov, I.: Rings of constants of linear derivations on Fermat rings. Commun. Algebra 46 (2018), 5469-5479. | DOI | MR | JFM

Cité par Sources :